Answer:
His final velocity is 15.8 m/s.
Step-by-step explanation:
Given:
Initial velocity of the driver is, m/s
Acceleration of the driver is, m/s²
Time taken to reach final velocity is, s.
The final velocity is given using the Newton's equations of motion as:
, where, is the final velocity.
Now, plug in the given values and solve for .
Therefore, his final velocity is 15.8 m/s.
Answer:
a) 46.5º b) 64.4º
Explanation:
To solve this problem we will use the laws of geometric optics
a) For this part we will use the law of reflection that states that the reflected and incident angle are equal
θ = 43.5º
This angle measured from the surface is
θ_r = 90 -43.5
θ_s = 46.5º
b) In this part the law of refraction must be used
n₁ sin θ₁ = n₂. Sin θ₂
sin θ₂ = n₁ / n₂ sin θ₁
The index of air refraction is n₁ = 1
The angle is this equation is measured between the vertical line called normal, if the angles are measured with respect to the surface
θ_s = 90 - θ
θ_s = 90- 43.5
θ_s = 46.5º
sin θ₂ = 1 / 1.68 sin 46.5
sin θ₂ = 0.4318
θ₂ = 25.6º
The angle with respect to the surface is
θ₂_s = 90 - 25.6
θ₂_s = 64.4º
measured in the fourth quadrant
Answer:
Force = 125 [N]
Explanation:
In the attached image we can see a sketch of the lever system.
And if we make a sum of moments at the point O equal to zero (0).
In the equation showed in the image, we can determinate the force that we need
Answer:let initial velocity u=14m/s
Final velocity v=20m/s
Time taken t=30
Acceleration =a
V=u +at
a= (20-14)/30
a=0.2m/s^2
Explanation:
Acceleration is the change in velocity with respect to time.