1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
I am Lyosha [343]
3 years ago
9

A stainless steel ball (rho = 8055 kg/m3, cp = 480 J/kg·K) of diameter D = 0.21 m is removed from the oven at a uniform temperat

ure of 350°C. The ball is then subjected to the flow of air at 1 atm pressure and 30°C with a velocity of 6 m/s. The surface temperature of the ball eventually drops to 250°C. Determine the average convection heat transfer coefficient during this cooling process and estimate how long this process has taken. The average surface temperature is 300°C, and the properties of air at 1 atm pressure and the free stream temperature of 30°C are Pr = 0.7282, μs at 300°C = 2.934 × 10–5 kg/m·s, μ[infinity] = 1.872 × 10–5 kg/m·s, v = 1.608 × 10–5 m2/s, and k = 0.02588 W/m·°C.

Engineering
2 answers:
Nataliya [291]3 years ago
5 0

Answer:

Explanation:

The complete detailed  explanation which answer the question efficiently is shown in the attached files below.

I hope it helps a lot !

maria [59]3 years ago
3 0

Answer:

Average convection heat transfer coefficient, \dot{Q_{ave} } = 832.42 W

time taken for the process, \triangle t = 37.9 min

Explanation:

The average convection heat transfer rate is calculated using the formula:

\dot{Q_{ave} } = h A_{s} (T_s - T_{\infty} )

The surface area of the steel ball is given by :

A_{s} = \pi D^{2} \\A_{s} = \pi * 0.21^{2} \\A_{s} = 0.139 m^2

Free stream temperature, T_{\infty} = 30^{0} C

Initial temperature of the ball, T₁ = 350°C

Final temperature of the ball, T₂ = 250°C

Average surface temperature of the ball:

T_s = \frac{T_1 + T_2}{2} \\T_s = \frac{350 + 250}{2}\\T_s = 300^{0} C

Velocity of air, V = 6 m/s

Diameter of the ball, D = 0.21 m

Viscosity, v = 1.608 * 10⁻⁵ m²/s

Reynold number Re can be calculated by using the formula: Re = \frac{VD}{v}

Re = \frac{6 * 0.21}{1.608 * 10^{-5} }

Re = 78358.21

The Nusselt number can be calculated by using the equation:

Nu = 2 + (0.4Re^{0.5} + 0.06Re^{0.67} ) (Pr^{0.4}) (\frac{\mu_{\infty}}{\mu_s})^{0.25} \\Nu = 2 + (0.4*78358.21^{0.5} + 0.06*78358.21^{0.67} ) (0.7282^{0.4}) (\frac{1.872*10^{-5}}{2.934*10^{-5}})^{0.25}

Nu = 179.95

The heat transfer coefficient can be calculated using the formula:

h = \frac{k* Nu}{D} \\h = \frac{0.02588* 179.95}{0.21}\\h = 22.18 W/m^2 k

\dot{Q_{ave} } = h A_{s} (T_s - T_{\infty} )

\dot{Q_{ave} } = 22.18 *  0.139 (300 -30 )\\\dot{Q_{ave} } = 832.42 W

The time taken for the process, \triangle t = \frac{Q_{total} }{\dot{Q_{ave} }}

Q_{total} = mc_{p} (T_1 - T_2)

Volume of the steel ball, V = \frac{\pi * D^3 }{6}

V = \frac{\pi * 0.21^3 }{6}

V = 0.0049 m³

Density of steel, \rho = 8055 kg/m^{3}

Mass of the steel, m = \rho V

m = 8055*0.0049

m = 39.47 kg

Total rate of heat transfer: Q_{total} = mc_{p} (T_1 - T_2)

Specific heat capacity of steel ball, c_p = 480 J/kg

Q_{total} = 39.47 *480 (350 - 250)

Q_{total} = 1894560 J

\triangle t = \frac{Q_{total} }{\dot{Q_{ave} }}

\triangle t = 1894560/832.42\\\triangle t = 2275.97s\\\triangle t = 2275.97/60\\\triangle t = 37.9 min

You might be interested in
What type of engineer works to create a practical and safe energy source?
Fittoniya [83]
Why did you put this on here when you know the answer lol
4 0
3 years ago
Can you use isentropic efficiency for a non-adiabatic compressor?
vodomira [7]
Mark brainliest please!

Isothermal work will be less than the adiabatic work for any given compression ratio and set of suction conditions. The ratio of isothermal work to the actual work is the isothermal efficiency. Isothermal paths are not typically used in most industrial compressor calculations.

Compressors

Compressors are used to move gases and vapors in situations where large pressure differences are necessary.

Types of Compressor

Compressors are classified by the way they work: dynamic (centrifugal and axial) or reciprocating. Dynamic compressors use a set of rotating blades to add velocity and pressure to fluid. They operate at high speeds and are driven by steam or gas turbines or electric motors. They tend to be smaller and lighter for a given service than reciprocating machines, and hence have lower costs.

Reciprocating compressors use pistons to push gas to a higher pressure. They are common in natural gas gathering and transmission systems, but are less common in process applications. Reciprocating compressors may be used when very large pressure differences must be achieved; however, since they produce a pulsating flow, they may need to have a receiver vessel to dampen the pulses.

The compression ratio, pout over pin, is a key parameter in understanding compressors and blowers. When the compression ratio is below 4 or so, a blower is usually adequate. Higher ratios require a compressor, or multiple compressor stages, be used.

When the pressure of a gas is increased in an adiabatic system, the temperature of the fluid must rise. Since the temperature change is accompanied by a change in the specific volume, the work necessary to compress a unit of fluid also changes. Consequently, many compressors must be accompanied by cooling to reduce the consequences of the adiabatic temperature rise. The coolant may flow through a jacket which surrounds the housing with liquid coolant. When multiple stage compressors are used, intercooler heat exchangers are often used between the stages.

Dynamic Compressors

Gas enters a centrifugal or axial compressor through a suction nozzle and is directed into the first-stage impeller by a set of guide vanes. The blades push the gas forward and into a diffuser section where the gas velocity is slowed and the kinetic energy transferred from the blades is converted to pressure. In a multistage compressor, the gas encounters another set of guide vanes and the compression step is repeated. If necessary, the gas may pass through a cooling loop between stages.

Compressor Work

To evaluate the work requirements of a compressor, start with the mechanical energy balance. In most compressors, kinetic and potential energy changes are small, so velocity and static head terms may be neglected. As with pumps, friction can be lumped into the work term by using an efficiency. Unlike pumps, the fluid cannot be treated as incompressible, so a differential equation is required:

Compressor Work
Evaluation of the integral requires that the compression path be known - - is it adiabatic, isothermal, or polytropic?
uncooled units -- adiabatic, isentropic compression
complete cooling during compression -- isothermal compression
large compressors or incomplete cooling -- polytropic compression
Before calculating a compressor cycle, gas properties (heat capacity ratio, compressibility, molecular weight, etc.) must be determined for the fluid to be compressed. For mixtures, use an appropriate weighted mean value for the specific heats and molecular weight.

Adiabatic, Isentropic Compression

If there is no heat transfer to or from the gas being compressed, the porocess is adiabatic and isentropic. From thermodynamics and the study of compressible flow, you are supposed to recall that an ideal gas compression path depends on:

Adiabatic Path
This can be rearranged to solve for density in terms of one known pressure and substituted into the work equation, which then can be integrated.
Adiabatic Work
The ratio of the isentropic work to the actual work is called the adiabatic efficiency (or isentropic efficiency). The outlet temperature may be calculated from
Adiabatic Temperature Change
Power is found by multiplying the work by the mass flow rate and adjusting for the units and efficiency.
Isothermal Compression

If heat is removed from the gas during compression, an isothermal compression cycle may be achieved. In this case, the work may be calculated from:

http://facstaff.cbu.edu/rprice/lectures/compress.html
4 0
3 years ago
Fibonacci sequence has many applications in Computer Science. Write a program to generate Fibonacci numbers as many as desired.
VikaD [51]

Answer:

The Python Code for Fibonacci Sequence is :

# Function for nth Fibonacci number  

def Fibonacci(n):  

if n<0:  

 print("Incorrect input")  

# First Fibonacci number is 0  

elif n==0:  

 return 0

# Second Fibonacci number is 1  

elif n==1:  

 return 1

else:  

 return Fibonacci(n-1)+Fibonacci(n-2)  

# Driver Program  

print(Fibonacci(9))  

Explanation:

The Fibonacci numbers are the numbers in the following integer sequence.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ……..

In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation

Fn = Fn-1 + Fn-2

with seed values

F0 = 0 and F1 = 1.

8 0
3 years ago
Read 2 more answers
Regeneration can only increase the efficiency of a Brayton cycle when working fluid leaving the turbine is hotter than the worki
storchak [24]

Answer:

True, <em>Regeneration is the only process where increases the efficiency of a Brayton cycle when working fluid leaving the turbine is hotter than working fluid leaving the compressor</em>.

Option: A

<u>Explanation: </u>

To increase the efficiency of brayton cycle there are three ways which includes inter-cooling, reheating and regeneration. <em>Regeneration</em> technique <em>is used when a turbine exhaust fluids have higher temperature than the working fluid leaving the compressor of the turbine. </em>

<em>Thermal efficiency</em> of a turbine is increased as <em>the exhaust fluid having higher temperatures are used in heat exchanger where the fluids from the compressor enters and increases the temperature of the fluids leaving the compressor. </em>

6 0
3 years ago
Read 2 more answers
Of the cost reduction strategies for workers' compensation mentioned in the required readings, which one do you think would work
Vesnalui [34]

In industries together with production, we want people to address the manufacturing of merchandise and the usage of heavy machinery.

<h3>What is the painting situation?</h3>

In such painting situations, people are at risk of injuries, and this prices the maximum for the company. So so that you can put into effect value discount is such conditions we want to have right coincidence cowl plans for the people and make sure all of the protection precautions are taken withinside the factory.

  1. The people have to be properly educated on using protection measures and in case any injuries arise we have to have coverage claims in order that we not want to make investments extra cash and we also can offer protection and protection to the people.
  2. This approach is excellent for this enterprise due to the fact regardless of what number of precautions we take people are uncovered to fitness risks and as a result having the right coverage insurance is a superb value discount strategy.

Read more bout the compensation :

brainly.com/question/25273589

#SPJ1

3 0
1 year ago
Other questions:
  • Define the Problem
    11·1 answer
  • 1- A square-wave inverter has a dc source of 96 V and an output frequency of 60 Hz. The load is a series RL load with R = 5 Ohm
    7·1 answer
  • You live on a street that runs East to West. You just had 2 inche of snow and you live on the North side of the street. You retu
    14·1 answer
  • The button on the _ valve should be held when pressure bleeding the brakes
    8·1 answer
  • A ball thrown vertically upward from the top of a building of 60ft with an initial velocity of vA=35 ft/s. Determine (a) how hig
    8·1 answer
  • Prompt the user to enter five numbers, being five people's weights. Store the numbers in an array of doubles. Output the array's
    11·2 answers
  • 5 kg of a wet steam has a volume of 2 m3
    8·1 answer
  • A demand factor of _____ percent applies to a multifamily dwelling with ten units if the optional calculation method is used.
    14·1 answer
  • Pointttttttttttttssssssssssss
    12·1 answer
  • In order to live and grow, bacteria need moisture, food, the right temperature, and ______? Fill in the blank
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!