Answer:
μ=0.329, 2.671 turns.
Explanation:
(a) ln(T2/T1)=μβ β=angle of contact in radians
take T2 as greater tension value and T1 smaller, otherwise the friction would be opposite.
T2=5000 lb and T1=80 lb
we have two full turns which makes total angle of contact=4π radians
μ=ln(T2/T1)/β=(ln(5000/80))/4π
μ=0.329
(b) using the same relation as above we will now compute the angle of contact.
take greater tension as T2 and smaller as T1.
T2=20000 lb T1=80 lb μ=0.329
β=ln(20000/80)/0.329=16.7825 radians
divide the angle of contact by 2π to obtain number of turns.
16.7825/2π =2.671 turns
Answer:
Speed of aircraft ; (V_1) = 83.9 m/s
Explanation:
The height at which aircraft is flying = 3000 m
The differential pressure = 3200 N/m²
From the table i attached, the density of air at 3000 m altitude is; ρ = 0.909 kg/m3
Now, we will solve this question under the assumption that the air flow is steady, incompressible and irrotational with negligible frictional and wind effects.
Thus, let's apply the Bernoulli equation :
P1/ρg + (V_1)²/2g + z1 = P2/ρg + (V_2)²/2g + z2
Now, neglecting head difference due to high altitude i.e ( z1=z2 ) and V2 =0 at stagnation point.
We'll obtain ;
P1/ρg + (V_1)²/2g = P2/ρg
Let's make V_1 the subject;
(V_1)² = 2(P1 - P2)/ρ
(V_1) = √(2(P1 - P2)/ρ)
P1 - P2 is the differential pressure and has a value of 3200 N/m² from the question
Thus,
(V_1) = √(2 x 3200)/0.909)
(V_1) = 83.9 m/s
Answer:
It will not experience fracture when it is exposed to a stress of 1030 MPa.
Explanation:
Given
Klc = 54.8 MPa √m
a = 0.5 mm = 0.5*10⁻³m
Y = 1.0
This problem asks us to determine whether or not the 4340 steel alloy specimen will fracture when exposed to a stress of 1030 MPa, given the values of <em>KIc</em>, <em>Y</em>, and the largest value of <em>a</em> in the material. This requires that we solve for <em>σc</em> from the following equation:
<em>σc = KIc / (Y*√(π*a))</em>
Thus
σc = 54.8 MPa √m / (1.0*√(π*0.5*10⁻³m))
⇒ σc = 1382.67 MPa > 1030 MPa
Therefore, the fracture will not occur because this specimen can handle a stress of 1382.67 MPa before experience fracture.
Architects must have a professional bachelor's or master's degree in architecture from a program that has been accredited by the National Architectural Accrediting Board, and a state license.