Answer:
Elements in a period have wide range of chemical properties.
Explanation:
- Period is the row of chemical elements's arrangement in the periodic table. It is numbered from 1 to 7.
- In period as we move towards right the atomic number of element constantly increases along with the change in chemical properties.
- As we move from left towards right in period, the valence electron number regularly increases in every element.
- This valence electron differs the reactivity of the elements.
Answer:
See attached document
Explanation:
Entire process for deriving the asked expression dV across the bridge as function of dP is illustrated in the attachment below.
The document gives a step-by step process for arriving at the expression. However, manipulation of algebraic equations is skipped for the conciseness of the document.
It also gives the expression for the case when all resistors have different nominal values.
Answer:
D). 
Explanation:
As we know that temperature scale is linear so we will have

now we have

so the relation between two scales is given as

now we know that in kelvin scale the absolute temperature is 600 K
so now we have

so correct answer is
D). 
Answer:
a. A = 0.735 m
b. T = 0.73 s
c. ΔE = 120 J decrease
d. The missing energy has turned into interned energy in the completely inelastic collision
Explanation:
a.
4 kg * 10 m /s + 6 kg * 0 m/s = 10 kg* vmax
vmax = 4.0 m/s
¹/₂ * m * v²max = ¹/₂ * k * A²
m * v² = k * A² ⇒ 10 kg * 4 m/s = 100 N/m * A²
A = √1.6 m ² = 1.26 m
At = 2.0 m - 1.26 m = 0.735 m
b.
T = 2π * √m / k ⇒ T = 2π * √4.0 kg / 100 N/m = 1.26 s
T = 2π *√ 10 / 100 *s² = 1.99 s
T = 1.99 s -1.26 s = 0.73 s
c.
E = ¹/₂ * m * v²max =
E₁ = ¹/₂ * 4.0 kg * 10² m/s = 200 J
E₂ = ¹/₂ * 10 * 4² = 80 J
200 J - 80 J = 120 J decrease
d.
The missing energy has turned into interned energy in the completely inelastic collision
Answer:
f = 19,877 cm and P = 5D
Explanation:
This is a lens focal length exercise, which must be solved with the optical constructor equation
1 / f = 1 / p + 1 / q
where f is the focal length, p is the distance to the object and q is the distance to the image.
In this case the object is placed p = 25 cm from the eye, to be able to see it clearly the image must be at q = 97 cm from the eye
let's calculate
1 / f = 1/97 + 1/25
1 / f = 0.05
f = 19,877 cm
the power of a lens is defined by the inverse of the focal length in meters
P = 1 / f
P = 1 / 19,877 10-2
P = 5D