Answer:
1. well the value may vary because of different reactions to the technology because its new to a lot of people but to younger ones its something normal and something we cant live without but with older ones its something that they have lived without for most of there life.
Explanation:
Answer:
Heat can travel from one place to another in three ways: Conduction, Convection and Radiation. Both conduction and convection require matter to transfer heat. Conduction is the transfer of heat between substances that are in direct contact with each other. Thermal energy is transferred from hot places to cold places by convection. Radiation is a method of heat transfer that does not rely upon any contact between the heat source and the heated object as is the case with conduction and convection. Heat can be transmitted through empty space by thermal radiation often called infrared radiation.
Explanation:
Answer:
Mammography is the process in which low energy radiations are used to diagnose and screening. The purpose of this process is the early detection of the breast cancer. These low energy radiations may have some risks like damaging and burning of cells.
In the current scenario, woman is apprehensive because she has read about the risks of using ionizing radiations. The radiographer should tell her the benefits of the mammography will outweigh its potential consequences. Screening, for instance, will let her know if she is suffering from breast cancer. Cancer is very dangerous disease as compare to very small burning.
In this way radiographer should handle the situation.
Answer:
He crawled.
Explanation: He crawled with the strength he gained from a leaf.
Answer: the constant angular velocity of the arms is 86.1883 rad/sec
Explanation:
First we calculate the linear velocity of the single sprinkler;
Area of the nozzle = π/4 × d²
given that d = 8mm = 8 × 10⁻³
Area of the nozzle = π/4 × (8 × 10⁻³)²
A = 5.024 × 10⁻⁵ m²
Now total discharge is dived into 4 jets so discharge for single jet will be;
Q_single = Q / n = 0.006 / 4 = 1.5 × 10⁻³ m³/sec
So using continuity equation ;
Q_single = A × V_single
V_single = Q_single/A
we substitute
V_single = (1.5 × 10⁻³) / (5.024 × 10⁻⁵)
V_single = 29.8566 m/s
Now resolving the forces as shown in the second image,
Vt = Vcos30°
Vt = 29.8566 × cos30°
Vt = 25.8565 m/s
Finally we calculate the angular velocity;
Vt = rω
ω_single = Vt / r
from the given diagram, radius is 300mm = 0.3m
so we substitute
ω_single = 25.8565 / 0.3
ω_single = 86.1883 rad/sec
Therefore the constant angular velocity of the arms is 86.1883 rad/sec