Answer:
Explanation:
Its definitely an Attractive force since the two charges are Unlike.
From Coulombs Law
F=kq1q2/R²
Given
K=9x10^9
R=1m
q1=2C
q2=-1C
F=(9x10^9 x 2 x -1)/1²
F= - 1.8x10^10N. (Attractive).
Explanation :
It is given that,
In the given figure all the three resistors are in series.
Current flowing in the circuit, 
Voltage, 
We know that in series circuit the current flowing in all resistors is same.
Using Ohm's law, we get:



Hence, this is the required solution.
Answer:
a) The angular acceleration of the beam is 0.5 rad/s²CW (direction clockwise due the tangential acceleration is positive)
b) The acceleration of point A is 3.25 m/s²
The acceleration of point E is 0.75 m/s²
Explanation:
a) The relative acceleration of B with respect to D is equal:

Where
aB = absolute acceleration of point B = 2.5 j (m/s²)
aD = absolute acceleration of point D = 1.5 j (m/s²)
(aB/D)n = relative acceleration of point B respect to D (normal direction BD) = 0, no angular velocity of the beam
(aB/D)t = relative acceleration of point B respect to D (tangential direction BD)


We have that
(aB/D)t = BDα
Where α = acceleration of the beam
BDα = 1 m/s²
Where
BD = 2

b) The acceleration of point A is:

(aA/D)t = ADαj

The acceleration of point E is:
(aE/D)t = -EDαj

Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
Below is the solution:
<span>centripetal accel = 1.5*g
ω²r = 1.5*9.8m/s²
ω² * 8m = 14.7 m/s²
ω = 1.36 rad/s * 1rev/2πrads * 60s/min = 12.9 rpm</span>
Answer:
The capacitance of the capacitor is 
Explanation:
To solve this exercise it is necessary to apply the concepts related to Power and energy stored in a capacitor.
By definition we know that power is represented as

Where,
E= Energy
t = time
Solving to find the Energy we have,

Our values are:


Then,


With the energy found we can know calculate the Capacitance in a capacitor through the energy for capacitor equation, that is

Solving for C=



Therefore the capacitance of the capacitor is 