A,c, and d are your answers :)
Answer: Induced emf is given by:
ε= Bvl
On putting the values we get
=5×10
−5
×1.50×2
=0.15mV
Explanation:
Hope these helped have a wonderful Christmas break ❄️
Answer:
678.2 km/h and 80.54° north of east
Explanation:
From the question,
Using pythagoras theorem,
a² = b²+c²..................... Equation 1
Where a = resultant velocity
Given: b = 600 km/h, c = 100 km/h
Substitute these values into equation 1
R² = 600²+100²
R² = 360000+10000
R² = 460000
R = √460000
R = 678.2 km/h.
And the direction is
tanθ = 600/100
tanθ = 6
tanθ = 6
θ = tan⁻¹(6)
θ = 80.54°.
Hence the resultant velocity of the aircraft is 678.2 km/h and 80.54° north of east
Suppose I wanted to answer this question about the model.
What info about the model would I need to know in order to
make any intelligent guess about the model ?
Hint:
It would really help if I could SEE the model, or at least a photo of it.
Answer:
Ke=electron kinetic energy=
Explanation:
The electron has a mass of 
The speed of light in a vacuum is a universal constant with the value 299 792 458 m / s (186 282,397 miles / s), although it is usually close to 
Kinetic energy (K) is the energy associated with bodies that are in motion, depends on the mass and speed of the body and is calculated using the formula:
Equation(1)
K=kinetic energy (J)
m =mass of the body (kg)
v= speed of the body
for this problem We replace in the equation (1)
= electron mass
=Half the speed of light
=electron speed
We replace in the equation (1) :




The energy kinetic of the electron is 