<u>Answer:</u> The equilibrium concentration of
is 1.285 M.
<u>Explanation:</u>
The chemical equation for the decomposition of phosphorus pentachloride follows:

The expression for equilibrium constant is given as:
![K_c=\frac{[PCl_3][Cl_2]}{[PCl_5]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BPCl_3%5D%5BCl_2%5D%7D%7B%5BPCl_5%5D%7D)
We are given:

![[PCl_3]=0.18M](https://tex.z-dn.net/?f=%5BPCl_3%5D%3D0.18M)
![[Cl_2]=0.30M](https://tex.z-dn.net/?f=%5BCl_2%5D%3D0.30M)
The concentration of solid substances are taken to be 1. Thus, they do not appear in the equilibrium constant expression.
Putting values in above equation, we get:
![0.042=\frac{0.18\times 0.30}{[PCl_5]}](https://tex.z-dn.net/?f=0.042%3D%5Cfrac%7B0.18%5Ctimes%200.30%7D%7B%5BPCl_5%5D%7D)
![[PCl_5]=1.285](https://tex.z-dn.net/?f=%5BPCl_5%5D%3D1.285)
Hence, the equilibrium concentration of
is 1.285 M.
Answer:
It's the oesophagus.
Explanation:
The worm digestive system consists of the pharynx, the esophagus, the crop, the intestine and the gizzard. The oesophagus is not mentioned. Thus, it's not part of the worm digestive system.
Answer:
Even ur best Friend Can you to have red flag feeling
Answer : The value of rate constant is, 
Explanation :
First we have to calculate the rate constant, we use the formula :
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = ?
t = time passed by the sample = 20 min
a = let initial amount of the reactant = 100 g
a - x = amount left after decay process = 100 - 85 = 15 g
Now put all the given values in above equation, we get


Therefore, the value of rate constant is, 
Answer:
It refers to the number of protons in the nucleus of an atom