I don't have a calculator with me right now, but that mass would be 1200 grams. Divide the given amount of grams by the molar mass of NH3, which is 17.031g/mol. (Nitrogen + 3(hydrogen)). Again, sorry I didn't have a calculator. But all you would need to do is divide 1200 by 17.031. If you need to use sig figs, your answer should have 2 because the 1.2 x 10^3 limits your amount of sig figs.
Answer:
Ionic bonds form when atoms transfer electrons between each other, forming ions that are electrically attracted to each other forming a bond between them. Sodium chloride (NaCl) is a typical ionic compound. The picture below shows both a sodium and a chlorine ion.
Explanation:
ionic bond
Because of the propensity of sodium to lose an electron and of chlorine to gain an electron, the elements are well suited to bond with one another. This transfer of electrons results in the formation of the ionic bond holding Na+ and Cl– together.
<span>C2Br2
First, we need to determine how many moles of the gas we have. For that, we'll use the Ideal Gas Law which is
PV = nRT
where
P = pressure (1.10 atm = 111458 Pa)
V = volume (10.0 ml = 0.0000100 m^3)
n = number of moles
R = Ideal gas constant (8.3144598 (m^3 Pa)/(K mol) )
T = Absolute temperature
Solving for n, we get
PV/(RT) = n
Now substituting our known values into the formula.
(111458 Pa * 0.0000100 m^3) / (288.5 K * 8.3144598 (m^3 Pa)/(K mol))
= (1.11458/2398.721652) mol
= 0.000464656 mol
Now let's calculate the empirical formula for this compound.
Atomic weight carbon = 12.0107
Atomic weight bromine = 79.904
Relative moles carbon = 13.068 / 12.0107 = 1.08802984
Relative moles bromine = 86.932 / 79.904 = 1.087955547
So the relative number of atoms of the two elements is
1.08802984 : 1.087955547
After dividing all numbers by the smallest, the ratio becomes
1.000068287 : 1
Which is close enough to 1:1 for me to consider the empirical formula to be CBr
Now calculate the molar mass of CBr
12.0107 + 79.904 = 91.9147
Finally, let's determine if the compound is actually CBr, or something like C2Br2, or some other multiple. Using the molar mass of CBr, multiply by the number of moles and see if the result matches the mass of the gas. So
91.9147 g/mol * 0.000464656 mol = 0.042708701 g
0.0427087 g is a lot smaller than 0.08541 g. So the compound isn't exactly CBr. Let's divide them to see what the factor is.
0.08541 / 0.0427087 = 1.99982673
1.99982673 is close enough to 2 to within the number of significant digits we have for me to claim that the formula for the unknown gas isn't CBr, but instead is C2Br2.</span>
radio waves, micro waves, infrared waves, visible light rays, ultra-violet rays, x-rays, then finally, gamma rays. I hope this was helpful to you.