Molarity is expressed as the number of moles of solute per volume of the solution. For example, we are given a solution of 2M NaOH this describes a solution that has 2 moles of NaOH per 1 L volume of the solution. To calculate the moles of NaCl in 1.0 M of solution, we simply multiply the volume given of the solution.
moles NaCl = 1.0 M (0.100 L ) = 0.10 mol NaCl --------> OPTION B
Answer: Astrology is not astronomy! ... Astronomers and other scientists know that stars many light years* away have no effect on the ... Imagine a straight line drawn from Earth through the Sun and out into space way ... The 13 constellations in the zodiac. ... on the phases of the Moon), each month got a slice of the zodiac all to itself.
Explanation: Hope this helps
Answer:
The particles move faster and are far apart
Explanation:
A substance may exist in three states of matter; solid, liquid and gas.
In the solid state, there is very strong intermolecular forces between the particles of the substance. They can only vibrate or rotate about their mean positions but can not translate.
In the liquid state, the particles of the substance have a greater degree of freedom than in the solid. The magnitude of intermolecular forces is lower than in solids, the molecules can move at low speeds.
In a gas, the molecules are separated from each other with negligible intermolecular interaction hence they move at very high speed.
Therefore, for the water gas particles in the air above the cup; the particles move faster and are far apart.
Answer:
The atomic weight of an element represents the ratio of the average mass of atoms of a chemical element.
Answer:
i. Molar mass of glucose = 180 g/mol
ii. Amount of glucose = 0.5 mole
Explanation:
<em>The volume of the glucose solution to be prepared</em> = 500 
<em>Molarity of the glucose solution to be prepared</em> = 1 M
i. Molar mass of glucose (
) = (6 × 12) + (12 × 1) + (6 × 16) = 180 g/mol
ii.<em> mole = molarity x volume</em>. Hence;
amount (in moles) of the glucose solution to be prepared
= 1 x 500/1000 = 0.5 mole