Answer:
B.They do not react chemically
Explanation:
This is because all noble gases haves full outer shell therefore they don’t participate in bonding.They are referred to as inert which means unreactive.
Answer:
116.5 g of SO₂ are formed
Explanation:
The reaction is:
S₈(g) + 8O₂(g) → 8SO₂ (g)
Let's identify the moles of sulfur vapor, by the Ideal Gases Law
We convert the 921.4°C to Absolute T° → 921.4°C + 273 = 1194.4 K
5.87 atm . 3.8L = n . 0.082 L.atm/mol.K . 1194.4K
(5.87 atm . 3.8L) / (0.082 L.atm/mol.K . 1194.4K) = n → 0.228 moles of S₈
Ratio is 1:8, 1 mol of sulfur vapor can produce 8 moles of dioxide
Then, 0.228 moles of S₈ must produce (0.228 . 8) /1 = 1.82 moles
We convert the moles to g → 1.82 moles . 64.06 g /1mol = 116.5 g
I think your answer is A not sure tho
Answer:

Explanation:
We want to convert from moles to grams, so we must use the molar mass.
<h3>1. Molar Mass</h3>
The molar mass is the mass of 1 mole of a substance. It is the same as the atomic masses on the Periodic Table, but the units are grams per mole (g/mol) instead of atomic mass units (amu).
We are given the compound PI₃ or phosphorus triiodide. Look up the molar masses of the individual elements.
- Phosphorus (P): 30.973762 g/mol
- Iodine (I): 126.9045 g/mol
Note that there is a subscript of 3 after the I in the formula. This means there are 3 moles of iodine in 1 mole of the compound PI₃. We should multiply iodine's molar mass by 3, then add phosphorus's molar mass.
- I₃: 126.9045 * 3=380.7135 g/mol
- PI₃: 30.973762 + 380.7135 = 411.687262 g/mol
<h3>2. Convert Moles to Grams</h3>
Use the molar mass as a ratio.

We want to convert 3.14 moles to grams, so we multiply by that value.

The units of moles of PI₃ cancel.


<h3>3. Round</h3>
The original measurement of moles has 3 significant figures, so our answer must have the same. For the number we calculated, that is the tens place.
The 2 in the ones place tells us to leave the 9.

3.14 moles of phosphorous triiodide is approximately equal to <u>1290 grams of phosphorus triodide.</u>
The answer is B the flow of electrons through a substance