Here's the part you need to know:
(Weight of anything) =
(the thing's mass)
times
(acceleration of gravity in the place where the thing is) .
Weight = (mass ) x (gravity) .
That's always true everywhere.
You should memorize it.
For the astronaut on Saturn . . .
Weight = (mass ) x (gravity) .
Weight = (68 kg) x (10.44 m/s²)
= 709.92 newtons .
__________________________________
On Earth, gravity is only 9.8 m/s².
So as long as the astronaut is on Earth, his weight is only
(68 kg) x (9.8 m/s²)
= 666.4 newtons .
Notice that his mass is his mass ... it doesn't change
no matter where he goes.
But his weight changes in different places, because
it depends on the gravity in each place.
The larger mass object would have more kinetic energy. 1) its heavier 2) it covers a larger area 3) the more mass an object has, the larger the kinetic energy because of its weight.
Explanation:
electrical potential = (6.6-3.4)/0.20
= 16 uc/m
In an arithmetic progression, consecutive terms differ by the same value.
So, we have

which reflects the fact that the difference between P and 6 must be the same than the one between P and 14.
The equation solves to

And in fact, if you start with

every pair of consecutive terms differ by 4.
Answer:
Mammography is the process in which low energy radiations are used to diagnose and screening. The purpose of this process is the early detection of the breast cancer. These low energy radiations may have some risks like damaging and burning of cells.
In the current scenario, woman is apprehensive because she has read about the risks of using ionizing radiations. The radiographer should tell her the benefits of the mammography will outweigh its potential consequences. Screening, for instance, will let her know if she is suffering from breast cancer. Cancer is very dangerous disease as compare to very small burning.
In this way radiographer should handle the situation.