Answer:
Explanation:
An information contains
25Hz and 75Hz sine wave
Sample frequency is 500Hz
The analogy signal are generally
y(t) = Asin(2πx/λ - wt), w=2πf
y1(t)=Asin(2πx/λ - wt)
y1(t)=Asin(2πx/λ - 2π•25t)
y1(t)=Asin(2πx/λ - 50πt)
Similarly
y2(t)=Asin(2πx/λ - 150πt)
Using Nyquist theorem
Nyquist Theorem states that in order to adequately reproduce a signal it should be periodically sampled at a rate that is 2 times the highest frequency you wish to record.
From sampling
f(nyquist)=f(sample)/2
f(nyquist)=500/2
f(nyquist)=250Hz
From signal
The highest frequency is 150Hz
F(nyquist) = 2×F(highest)
f(nyquist)= 2×150
f(nyquist)= 300Hz
Sample per frequency Ns is given as
Ns=F(sample)/F(highest signal)
Ns=500/150
Ns=3.33sample/period
This is above nyquist rate of 2sample/period
So signal below 300Hz reproduced without aliasing.
The highest resulting frequency is 300Hz
Well, according to what I see on the news usually I'd say...
Answers ~ A, B, C, E, D
I hope this helps! ^w^ Brainliest if can? :o
Answer: Option A: The number of trees sampled.
The accuracy can be understood as how close is the measured value to the true value. The aim is to monitor the population size of the insect pest in a 50 square kilometer. Random trees are selected, and number of eggs and larvae are counted. So, the measured value would be closer to actual value when the number of trees sampled are increased. More the number of trees sampled, less would be the chances of error and the accuracy of the estimate would increase.