- Angle (θ) = 60°
- Force (F) = 20 N
- Distance (s) = 200 m
- Therefore, work done
- = Fs Cos θ
- = (20 × 200 × Cos 60°) J
- = (20 × 200 × 1/2) J
- = (20 × 100) J
- = 2000 J
<u>Answer</u><u>:</u>
<u>2</u><u>0</u><u>0</u><u>0</u><u> </u><u>J</u>
Hope you could get an idea from here.
Doubt clarification - use comment section.
Atmospheric pressure is caused by the weight of the atmosphere pushing down on itself and on the surface below it.
Pressure is defined as the force acting on an object divided by the area upon witch the force is acting.
The specific gravity of the object’s material is 5.09.
<h3>To calculate the specific gravity of the object:</h3>
Weight difference = 9 - 7.2 = 1.8 N = Buoyant force of water
Buoyant Force in water(Fb) = density of water x g x volume of the body(Vb)
1.8 = 1000 x 9.81 x Vb
Vb = 1.8/9810 cubic meter
Now, in the air;
Weight of body = mg = 9 N
Mass of body,m = 9/9.81 Kg
So,
Density of body = m/ Vb
= 9/9.81 ÷ 1.8/9810
= 5094.44 kg per cubic meter
The specific gravity of body = density of body ÷ density of water
= 5094.44 ÷ 1000
= 5.09
Therefore, Specific gravity of body = 5.09
Learn more about Specific gravity here:
brainly.com/question/13258933
#SPJ4
Answer:
60.025m.
Explanation:
S= ut + at^2/2 (2nd equation of motion)
S= 0 + (9.8)(3.5)^2 /2 (free fall case, initial velocity = 0)
S = 4.9 x 12.25
S= 60.025 m.
Disclaimer: did math in my head, so you better double check with a calculator.