Answer:
Distance is directly proportional to the velocity
Explanation:
In 1929, Edwin Hubble's wrote an article that talked about relationship between the distance and recession speed/velocity of galaxies which led to what is known as the Hubble Law. This law states that galaxies are moving away from the earth at velocities proportional to their distances.
Thus is written as;
v = H_o•d
Where;
v is velocity
d is distance
H_o is Hubble's constant rate of cosmic expansion.
He came to this conclusion by generating a graph known as Hubble's classic graph which was a graph of observed velocity vs distance for nearby galaxies.
Answer:
<h2>a) Time elapsed before the bullet hits the ground is 0.553 seconds.</h2><h2>b)
The bullet travels horizontally 110.6 m</h2>
Explanation:
a) Consider the vertical motion of bullet
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Displacement, s = 1.5 m
Substituting
s = ut + 0.5 at²
1.5 = 0 x t + 0.5 x 9.81 xt²
t = 0.553 s
Time elapsed before the bullet hits the ground is 0.553 seconds.
b) Consider the horizontal motion of bullet
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 200 m/s
Acceleration, a = 0 m/s²
Time, t = 0.553 s
Substituting
s = ut + 0.5 at²
s = 200 x 0.553 + 0.5 x 0 x 0.553²
s = 110.6 m
The bullet travels horizontally 110.6 m
The equation of the graph is
Force = (mass) x (acceleration) .
The graph is a straight line that passes through the origin,
and its slope is the mass of the object being studied.
Answer:
W = 0.135 N
Explanation:
Given:
- y (x, t) = 8.50*cos(172*x -2730*t)
- Weight of string m*g = 0.0126 N
- Attached weight = W
Find:
The attached weight W given that Tension and W are equal.
Solution:
The general form of standing mechanical waves is given by:
y (x, t) = A*cos(k*x -w*t)
Where k = stiffness and w = angular frequency
Hence,
k = 172 and w = 2730
- Calculate wave speed V:
V = w / k = 2730 / 172 = 13.78 m/s
- Tension in the string T:
T = Y*V^2
where Y: is the mass per unit length of the string.
- The tension T and weight attached W are equal:
T = W = Y*V^2 = (w/L*g)*V^2
W = (0.0126 / 1.8*9.81)*(13.78)^2
W = 0.135 N