The directions arrow<span> is </span>always<span> going the wrong </span>way<span>.</span>
We begin by noting that the angle of incidence is the one that's taken with respect to the normal to the surface in question. In this case the angle of incidence is 30. The material is Flint Glass according to the original question. The refractive indez of air n1=1, the refractive index of red in flint glass is nred=1.57, finally for violet in the glass medium is nviolet=1.60. Snell's Law dictates:

Where

differs for each wavelenght, that means violet and red will have different refractive indices in the glass.
In the second figure provided details are given on which are the angles in question,

is the distance between both rays.


At what distance d from the incidence normal will the beams land at the bottom?
For violet we have:

For red we have:

We finally have:
Answer:
The best glasses have a wider bowl than rim to allow for proper swirling. The swirl releases volatile aroma compounds and creates a vortex in the center of the glass towards which these compounds are drawn
Explanation:\\\
KE = (1/2)·(mass)·(speed)²
KE = (1/2)·(50 kg)·(18 m/s)²
KE = (25 kg)·(324 m²/s²)
KE = 8,100 kg-m²/s²
KE = 8,100 Joules
Answer:
Explanation:
Let the forward displacement is taken is positive, and the backward displacement is taken is negative.
first displacement = + 18 cm
second displacement = - 6 cm
third displacement = - 12 cm
net displacement = 18 - 12 - 6 = 0 cm