Answer:
102000 kg
Explanation:
Given:
A total Δν = 15 km/s
first stage mass = 1000 tonnes
specific impulse of liquid rocket = 300 s
Mass flow rate of liquid fuel = 1500 kg/s
specific impulse of solid fuel = 250 s
Mass flow of solid fuel = 200 kg/s
First stage burn time = 1 minute = 1 × 60 seconds = 60 seconds
Now,
Mass flow of liquid fuel in 1 minute = Mass flow rate × Burn time
or
Mass flow of liquid fuel in 1 minute = 1500 × 60 = 90000 kg
Also,
Mass flow of solid fuel in 1 minute = Mass flow rate × Burn time
or
Mass flow of solid fuel in 1 minute = 200 × 60 = 12000 kg
Therefore,
The total jettisoned mass flow of the fuel in first stage
= 90000 kg + 12000 kg
= 102000 kg
The distance covered by the acorn is 3.136 m.
<u>Explanation:</u>
The time taken for the acorn to hit the ground is 0.8 s. As it is a free fall, the acorn will be completely under the influence of gravity. So the acceleration will be acceleration due to gravity.
Then using the second law of equation,

Since the initial velocity and time is zero, then the time taken to reach the ground is stated as 0.8 s, so

So the distance covered by the acorn is 3.136 m.
Answer:
It becomes profane as a result of desacralization
Explanation:
Because desacralization means when a dedicated religious structure is no longer used for its intended purpose both rather used for another purpose other than the original purpose
Answer:

Explanation:
The attached figure shows the whole description. Considering the applied force is 100 N.
The acceleration of both blocks A and B, 
Firstly calculating the mass m using the second law of motion as :
F = ma
m is the mass


m = 125 kg
It suddenly encounters a surface that supplies 25.0 N a friction, F' = 25 N



So, the new acceleration of the block is
. Hence, this is the required solution.
Denser materials tend to be closer to earths center due to their mass gravity is shown by the equation mg
Which stands for mass x gravity.