1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetach [21]
3 years ago
14

Is the stomach just below the waist?

Physics
1 answer:
Blizzard [7]3 years ago
5 0
The stomach is above the waist, below the waist is your, yunno. the stomach and bladder sit right on top of the waist, hope this helps, have an amazing day:)
You might be interested in
What is the us specification for ac power?
USPshnik [31]
120 volts for most home a phone charger can convert 120 volts ac to 5 volts dc
3 0
3 years ago
A thin rod of length 0.75 m and mass 0.42 kg is suspended
MrRissso [65]

Answer:

a)  K = 0.63 J, b)  h = 0.153 m

Explanation:

a) In this exercise we have a physical pendulum since the rod is a material object, the angular velocity is

         w² = \frac{m g d}{I}

where d is the distance from the pivot point to the center of mass and I is the moment of inertia.

The rod is a homogeneous body so its center of mass is at the geometric center of the rod.

              d = L / 2

the moment of inertia of the rod is the moment of a rod supported at one end

              I = ⅓ m L²

we substitute

            w = \sqrt{\frac{mgL}{2}  \ \frac{1}{\frac{1}{3} mL^2} }

            w = \sqrt{\frac{3}{2}  \ \frac{g}{L} }

            w = \sqrt{ \frac{3}{2} \ \frac{9.8}{0.75}  }

            w = 4.427 rad / s

an oscillatory system is described by the expression

              θ = θ₀ cos (wt + Φ)

the angular velocity is

             w = dθ /dt

             w = - θ₀ w sin (wt + Ф)

In this exercise, the kinetic energy is requested in the lowest position, in this position the energy is maximum. For this expression to be maximum, the sine function must be equal to ±1

In the exercise it is indicated that at the lowest point the angular velocity is

           w = 4.0 rad / s

the kinetic energy is

           K = ½ I w²

           K = ½ (⅓ m L²) w²

           K = 1/6 m L² w²

           K = 1/6 0.42 0.75² 4.0²

           K = 0.63 J

b) for this part let's use conservation of energy

starting point. Lowest point

             Em₀ = K = ½ I w²

final point. Highest point

             Em_f = U = m g h

energy is conserved

             Em₀ = Em_f

             ½ I w² = m g h

             ½ (⅓ m L²) w² = m g h

             h = 1/6 L² w² / g

             h = 1/6 0.75² 4.0² / 9.8

             h = 0.153 m

5 0
2 years ago
Two tiny particles having charges of +5.00 μC and +7.00 μC are placed along the x-axis. The +5.00-µC particle is at x = 0.00 cm,
Liula [17]

Answer:

The third charged particle must be placed at x = 0.458 m = 45.8 cm

Explanation:

To solve this problem we apply Coulomb's law:  

Two point charges (q₁, q₂) separated by a distance (d) exert a mutual force (F) whose magnitude is determined by the following formula:  

F = \frac{k*q_1*q_2}{d^2} Formula (1)  

F: Electric force in Newtons (N)

K : Coulomb constant in N*m²/C²

q₁, q₂: Charges in Coulombs (C)  

d: distance between the charges in meters (m)

Equivalence  

1μC= 10⁻⁶C

1m = 100 cm

Data

K = 8.99 * 10⁹ N*m²/C²

q₁ = +5.00 μC = +5.00 * 10⁻⁶ C

q₂= +7.00 μC = +7.00 * 10⁻⁶ C

d₁ = x (m)

d₂ = 1-x (m)

Problem development

Look at the attached graphic.

We assume a positive charge q₃ so F₁₃ and F₂₃ are repulsive forces and must be equal so that the net force is zero:

We use formula (1) to calculate the forces F₁₃ and F₂₃

F_{13} = \frac{k*q_1*q_3}{d_1^2}

F_{23} = \frac{k*q_2*q_3}{d_2^2}

F₁₃ = F₂₃

\frac{k*q_1*q_3}{d_1^2} = \frac{k*q_2*q_3}{d_2^2} We eliminate k and q₃ on both sides

\frac{q_1}{d_1^2}= \frac{q_2}{d_2^2}

\frac{q_1}{x^2}=\frac{q_2}{(1-x)^2}

\frac{5*10^{-6}}{x^2}=\frac{7*10^{-6}}{(1-x)^2} We eliminate 10⁻⁶ on both sides

(1-x)^2 = \frac{7}{5} x^2

1-2x+x^2=\frac{7}{5} x^2

5-10x+5x^2=7 x^2

2x^2+10x-5=0

We solve the quadratic equation:

x_1 = \frac{-b+\sqrt{b^2-4ac} }{2a} = \frac{-10+\sqrt{10^2-4*2*(-5)} }{2*2} = 0.458m

x_2 = \frac{-b-\sqrt{b^2-4ac} }{2a} = \frac{-10-\sqrt{10^2-4*2*(-5)} }{2*2} = -5.458m

In the option x₂, F₁₃ and F₂₃ will go in the same direction and will not be canceled, therefore we take x₁ as the correct option since at that point the forces are in  opposite way .

x = 0.458m = 45.8cm

8 0
3 years ago
when white light is incident on prism, which one of the resulting color components will have the lowest index of refraction?
attashe74 [19]
The color components that will have the lowest index of refraction will be orange.
3 0
3 years ago
Read 2 more answers
A mass of gas under constant pressure occupies a volume of 0.5 m3 at a temperature of 20°C. Using the formula for cubic expansio
Kryger [21]
No cubic expansion given
6 0
3 years ago
Other questions:
  • the volume of ice block is 2400cm^3 and its density is 0.9 g/cm^3. how much part of it remains above the surface of water when i
    13·1 answer
  • A neutral atom of an element has the same number of __________ and ________. Question 6 options: Neutrons and electrons Protons
    11·1 answer
  • Heeeeeeeeeeeeeeeeeelp​
    11·1 answer
  • Which of the circuit diagrams shown in Figure 21-1A is a parallel circuit?
    10·1 answer
  • Mark all of the antimatter particlesa) Proton b) Electron c)Anti-top d) Gluon e) Tau Neutrino
    14·1 answer
  • A wagon wheel consists of 8 spokes of uniform diameter, each of mass ms and length L cm. The outer ring has a mass mring. What i
    6·1 answer
  • a 1.5 kg ball is thrown vertically upward with an initial speed of 15 m/s. if the initial potential energy is taken as zero, fin
    15·1 answer
  • Assuming the acceleration due to gravity on the moon is exactly one-sixth of the acceleration due to gravity on Earth, what is t
    6·1 answer
  • The flow of electricity in a certain path is called.
    5·1 answer
  • A parachute falling to the ground.<br><br>​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!