Answer:
sum of these two vectors is 6.06i+3.5j-3.5i+6.06j = 2.56i+9.56j
Explanation:
We have given first vector which has length of 7 units and makes an angle of 30° with positive x-axis
So x component of the vector 
y component of the vector 
So vector will be 6.06i+3.5j
Now other vector of length of 7 units and makes an angle of 120° with positive x-axis
So x component of vector 
y component of the vector 
Now sum of these two vectors is 6.06i+3.5j-3.5i+6.06j = 2.56i+9.56j
<u>Answer:</u> The final temperature of the solution is 
<u>Explanation:</u>
The amount of heat released by coffee will be absorbed by aluminium spoon.
Thus, 
To calculate the amount of heat released or absorbed, we use the equation:

Also,
..........(1)
where,
q = heat absorbed or released
= mass of aluminium = 39 g
= mass of coffee = 166 g
= final temperature = ?
= temperature of aluminium = 
= temperature of coffee = 
= specific heat of aluminium = 
= specific heat of coffee= 
Putting all the values in equation 1, we get:
![39\times 0.904\times (T_{final}-24)=-[166\times 4.1801\times (T_{final}-83)]](https://tex.z-dn.net/?f=39%5Ctimes%200.904%5Ctimes%20%28T_%7Bfinal%7D-24%29%3D-%5B166%5Ctimes%204.1801%5Ctimes%20%28T_%7Bfinal%7D-83%29%5D)

Hence, the final temperature of the solution is 
Mechanical or Electromagnetic
A.Positive as work=force×distance (assuming that distance is always a constant) the work will always be positive as the force is always positive(this is because force=mass×acceleration where the acceleration is always positive unless the mass is being slowed down)
Answer:
400 milli-rems
Solution:
As per the question;
Maximum energy of particle, 
Weight, w = 1 kg
Energy absorbed, E = 
Now,
Equivalent dose is given by:

1 Gy = 1 J/kg
Also,
1 Gy = 
Therefore,
Dose equivalent in milli-rems is given by:
