Answer:
603000 J
Explanation:
The following data were obtained from the question:
Energy required (Q) =...?
Mass (M) = 10000 g
Specific heat capacity (C) = 2.01 J/g°C
Overheating temperature (T2) = 121°C
Working temperature (T1) = 91°C
Change in temperature (ΔT) =.?
Change in temperature (ΔT) =T2 – T1
Change in temperature (ΔT) = 121 – 91
Change in temperature (ΔT) = 30°C
Finally, we shall determine the energe required to overheat the car as follow:
Q = MCΔT
Q = 10000 × 2.01 × 30
Q = 603000 J
Therefore, 603000 J of energy is required to overheat the car.
I think its answer choice A because it would better to talk to their parents first and not take matters into your own hands.
Multiply the volume by the density. 1 ml = 1 cm^3
1.11 g/cm^3 * 1 cm^3/mL * 386 mL = 428 g
All your units cancel out except for g which is what you would expect since you want units of mass.
Answer:
209.68
Explanation:
The only number that is relevant (though the rest are quite interesting) is the last one 1.98 * 10^24
1 mole of Barium Acetate Contains 6.02*10^23 particles.
There are 4 moles of carbon to every mole of Barium Acetate.
1.98 * 10^24 atoms / (4*6.02*10^23)
0.8223 moles of Ba(C2H3O2)2
Ba = 137
4C = 4*12 48
6H = 6*1 6
4O = 4*16 64
1mole 255 grams
0.8223 * 255 = 209.68 grams
I have used rounded masses for these elements depending on the periodic table you use. Go through the question with your masses to get a more accurate answer. My answer will not differ by much. It is a guide.
Hey there:
1 cm³ = 1 mL
D = m / V
7.25 = 12.9 / V
V = 12.9 / 7.25
V = 1.779 cm³