The answer is 6 ft 10 inches in millimeters (mm) is 0.833 ft.
Given,
The center of the school's basketball team is 6 ft 10 inches tall.
We have to convert the height of the player from feet and inches to feet.
Using the conversion factor,
1 ft = 12 inches
or, 12inches/ 1 ft
Converting 6ft 10 inches to ft, we get;
10 inches × 1 ft/ 12inches
= 0.833 ft
Therefore 6 ft 10 inches in millimeters (mm) is 0.833 ft.
Unit conversion is a method in which we multiply or divide with a particular numerical factor and then finally round off to the nearest significant digits.
To learn more about Millimeter and Unit conversions, visit: brainly.com/question/26371870
#SPJ4
Answer: Hydrogen bonds
Explanation: Hydrogen bonds allow two molecules to link together temporarily. Water molecules are made up of two hydrogen atoms and one oxygen atom, held together by polar covalent bonds.
Answer:a leech
Explanation: a parasitic relationship is one organism benefit on the other while the other is harmed
Answer:
a) equilibrium shifts towards the right
b) equilibrium shifts towards the right
c) equilibrium shifts towards the left
d) has no effect on equilibrium position
e) has no effect on equilibrium position
Explanation:
A reversible reaction may attain equilibrium in a closed system. A chemical system is said to be in a state of dynamic equilibrium when the rate of forward reaction is equal to the rate of reaction.
According to Le Chateliers principle, when a constraint such as a change in temperature, pressure, volume or concentration is imposed upon a system in equilibrium, the equilibrium position shifts in such a way as to annul the constraint.
When the concentration of reactants is increased, the equilibrium position is shifted towards the right hand side and more products are formed. For an endothermic reaction, the reverse reaction is favoured by a decrease in temperature. Increase in pressure has no effect on the system since there are equal volumes on both sides of the reaction equation. Similarly, the addition of a catalyst has no effect on the equilibrium position since it speeds up both the forward and reverse reactions to the same extent.