Answer:
It is (1/5)th as much.
Explanation:
If we apply the equation
F = G*m*M / r²
where
m = mass of a man
M₀ = mass of the planet Driff
M = mass of the Earth
r₀ = radius of the planet Driff
r = radius of the Earth
G = The gravitational constant
F = The gravitational force on the Earth
F₀ = The gravitational force on the planet Driff
g = the gravitational acceleration on the surface of the earth
g₀ = the gravitational acceleration on the surface of the planet Driff
we have
F₀ = G*m*M₀ / r₀² = G*m*(5*M) / (5*r)²
⇒ F₀ = G*m*M / (5*r²) = (1/5)*F
If
F₀ = (1/5)*F
then
W₀ = (1/5)*W ⇒ m*g₀ = (1/5)*m*g ⇒ g₀ = (1/5)*g
It is (1/5)th as much.
I believe the answer is C- payload
Answer:
288N
Explanation:
Given parameters:
Mass of Cheetah = 12kg
Acceleration = 24m/s²
Unknown:
Force needed by the cheetah to run = ?
Solution:
The force needed by the Cheetah to run is the net force.
According to Newton's law;
Force = mass x acceleration
Insert the given parameters and solve;
Force = 12 x 24 = 288N
I believe the answer is D. Thunderstorm
Unstable air indicates that <span>the lowest layers of an </span>air<span> mass is low in temperature. Thunderstorms is more likely to happen if there is unstable air mass because it provide a situation where there is more energy for the Thunderstorms to feed off of.</span>