Answer: magnitude of applied force is FA = mg + F
Where F is the resultant force downward that the rope moves with
Explanation:
Force downwards F is,
F = FA - T
T is the upwards tension force on the rope
FA is the actual applied force in pulling the rope down.
Therefore, T = FA - F .....equ. (1)
For the box to move up with force ma ( it's mass times its acceleration upwards) upwards tension on the roap must exceed its own weight mg ( it's mass times acceleration due to gravity 9.8m/s^2)
Therefore, ma = T - mg
T = ma + mg ..... equ. (2)
Equating equ. 1 and 2
T = FA - F = ma + mg
Therefore FA = ma + mg + F
But at constant velocity a = 0
Magnitude of applied force becomes
FA = mg + F
See image below
Answer:
Option C - 39.2 J
Explanation:
We are given that;
Mass; m = 2 kg.
Distance moved off the floor;d = 10 m.
Acceleration due to gravity;g = 9.8 m/s².
We want to find the work done.
Now, the Formula for work done is given by;
Work = Force × displacement.
In this case, it's force of gravity to lift up the boots, thus;
Formula for this force is;
Force = mass x acceleration due to gravity
Force = 2 × 9.8 = 19.2 N
∴ Work done = 19.6 × 2
Work done = 39.2 J.
Hence, the Work done to life the boot of 2 kg to a height of 2 m is 39.2 J.
Answer:
the required revolution per hour is 28.6849
Explanation:
Given the data in the question;
we know that the expression for the linear acceleration in terms of angular velocity is;
= rω²
ω² =
/ r
ω = √(
/ r )
where r is the radius of the cylinder
ω is the angular velocity
given that; the centripetal acceleration equal to the acceleration of gravity a
= g = 9.8 m/s²
so, given that, diameter = 4.86 miles = 4.86 × 1609 = 7819.74 m
Radius r = Diameter / 2 = 7819.74 m / 2 = 3909.87 m
so we substitute
ω = √( 9.8 m/s² / 3909.87 m )
ω = √0.002506477 s²
ω = 0.0500647 ≈ 0.05 rad/s
we know that; 1 rad/s = 9.5493 revolution per minute
ω = 0.05 × 9.5493 RPM
ω = 0.478082 RPM
1 rpm = 60 rph
so
ω = 0.478082 × 60
ω = 28.6849 revolutions per hour
Therefore, the required revolution per hour is 28.6849
Answer: 31.6ft
Explanation:
Check the attachment for the diagram.
According to the right angle triangle AEC, we will use Pythagoras theorem to get |AC|. Note that |AE| = |AB| - |CD|
that is 20ft - 10ft = 10ft
According to the theorem, the square of the sum of the adjacent side and the opposite side is equal to the square of the hypotenuse.
|AE|^2 + |EC|^2 = |AC|^2
10^2 + 30^2 = |AC|^2
100 + 900 = |AC|^2
|AC| = √1000
|AC| = 31.6ft
Therefore, the wire should be anchored 31.6ft to the ground to minimize the amount of wire needed.