Answer:
- <u>TRUE:</u> <em>Percent concentration is one of the most common and basic concentration measurement used by general public</em>
Explanation:
In chemistry there are many <em>concentration measurements</em> used to describe the mixtures. Some of them are, percent, molarity, molality, and molar fraction, among others.
Percent concentration is a popular one because it is commonly understood and used by the non specialist people, i.e. general public.
The percent concentration of a component is defined as: (amount of component in the mixture / amount of mixture) × 100.
The amounts may be measured in mass units (e.g grams) or volume units (e.g. mililiters).
For solutions, mass percent concentration is:
- % = (mass of solute / mass of solution) × 100.
And voluem percen contration is:
- % = (volume of solute / volume of solution) × 100
Since percentage is used in many profesional and personal activities, most persons use it.
For example, rubbing alcohol, that everyone buys in pharmacies, is 70%; vinager, used in the food, is acetic acid at 5% - 8%.
Explanation:
A single-replacement reaction replaces one element for another in a compound.
A double-replacement reaction exchanges the cations (or the anions) of two ionic compounds.
A precipitation reaction is a double-replacement reaction in which one product is a solid precipitate.
Solubility rules are used to predict whether some double-replacement reactions will occur.
Answer:
10.4 moles of CO2 are produced
Explanation:
take the 5.2 moles of C2H6 and multiply that by the mole ratio of CO2 to C2H6 in the reaction (4/2)
5.2 * (4/2) = 10.4
Answer:
Non-zero digits are always significant
Answer:
k ≈ 9,56x10³ s⁻¹
Explanation:
It is possible to solve this question using Arrhenius formula:

Where:
k1: 1,35x10² s⁻¹
T1: 25,0°C + 273,15 = 298,15K
Ea = 55,5 kJ/mol
R = 8,314472x10⁻³ kJ/molK
k2 : ???
T2: 95,0°C+ 273,15K = 368,15K
Solving:



<em>k ≈ 9,56x10³ s⁻¹</em>
I hope it helps!