The magnetic force on a current-carrying wire due to a magnetic field is given by

where
I is the current
L the wire length
B the magnetic field strength
In our problem, L=1.0 m,

and

, so we can re-arrange the formula to find the current in the wire:
Answer:
Explanation:
Given
speed of Electron 
final speed of Electron 
distance traveled 
using equation of motion

where v=Final velocity
u=initial velocity
a=acceleration
s=displacement


acceleration is given by 
where q=charge of electron
m=mass of electron
E=electric Field strength

Answer:
20 m/s
Explanation:
The speed of a wave is given by:

where
is the wavelength
f is the frequency
v is the speed
For the wave in this problem,
f = 10 Hz is the frequency
is the wavelength
So the speed is

Answer:
The magnitude of the gravitational force is 4.53 * 10 ^-7 N
Explanation:
Given that the magnitude of the gravitational force is F = GMm/r²
mass M = 850 kg
mass m = 2.0 kg
distance d = 1.0 m , r = 0.5 m
F = GMm/r²
Gravitational Constant G = 6.67 × 10^-11 Newtons kg-2 m2.
F = (6.67 × 10^-11 * 850 * 2)/0.5²
F = 0.00000045356 N
F = 4.53 * 10 ^-7 N