The concepts necessary to solve this problem are framed in the expression of string vibration frequency as well as the expression of the number of beats per second conditioned at two frequencies.
Mathematically, the frequency of the vibration of a string can be expressed as

Where,
L = Vibrating length string
T = Tension in the string
Linear mass density
At the same time we have the expression for the number of beats described as

Where
= First frequency
= Second frequency
From the previously given data we can directly observe that the frequency is directly proportional to the root of the mechanical Tension:

If we analyze carefully we can realize that when there is an increase in the frequency ratio on the tight string it increases. Therefore, the beats will be constituted under two waves; one from the first string and the second as a residue of the tight wave, as well


Replacing
for n and 202Hz for 



The frequency of the tightened is 205Hz
Answer:
oh I'm so sorry I can't answer your question it has been a long time since I learned that. so I totally forgot how to do this. sorry!
Answer:
<h3>The answer is 15 N</h3>
Explanation:
The force acting on an object can be found by using the formula
<h3>Force = mass × acceleration</h3>
From the question
mass = 50 g = 0.05 kg
acceleration = 300 m/s²
We have
force = 0.05 × 300
We have the final answer as
<h3>15 N</h3>
Hope this helps you
Answer:
the planes wings are lifting at an angle to gravity so the plane isn't lifting as much against gravity when it banks. some of the wing lift is going into turning the plane. :) so it needs more lift to bank and stay up
Explanation: