Explanation:
Ionic equation
NaCl(aq) --> Na+(aq) + Cl-(aq)
Na2SO4(aq) --> 2Na+(aq) + SO4^2-(aq)
In NaCl solution, 1 mole of Na+ is dissociated in 1 liter of solution while in Na2SO4, 2 moles of Na+ is dissociated in 1 liter of solution.
Molecular weight of NA2SO4 = (23*2) + 32 + (16*4)
= 142 g/mol
Molecular weight of NaCl = 23 + 35.5
= 58.5 g/mol
Masses
% Mass of NA+ in Na2SO4 = mass of Na+/total mass of Na2SO4 * 100
= 46/142 * 100
= 32.4%
% Mass of NA+ in NaCl = mass of Na+/total mass of NaCl * 100
= 23/58.5 * 100
= 39.3%
Therefore, the % mass of Na+ in NaCl and Na2SO4 are different so it cannot be used.
<span>1,3-cylohexadiene i synthesized starting from cyclohexane in following 4 steps.
1) Free Radical Substitution Rxn: Halogenation of cyclohexane in the presence of UV yield chlorocyclohexane.
2) Elimination Rxn: Dehydrohalogenation of chlorocyclohexane yields cyclohexene.
3) Halogenation of Cyclohexene (
Electrophillic Addition Rxn) gives 1,2-dihalocyclohexane.
4) Elemination Rxn: When dibromocyclohexane is treated with KOH and heated it gives 1,3-cyclohexadiene as shown below,</span>
2H(+) + SO4(2-) + Ca(2+) + 2I(-) -> CaSO4(s) + 2H(+) + 2I(-)
The signs in brackets are the subscripts for the charge of the ion. This is the complete ionic equation. The net ionic equation is:
Ca(2+) + SO4(2-) -> CaSO4
Organic is safer inorganic is the same but less better