Potential energy is energy due to an object's height above the ground.
Potential energy = mass x gravity x height
Kinetic energy is energy due to the motion of the object.
Kinetic energy = 1/2 x mass x velocity²
1.
The ball is not moving and is at a height above the ground so it has only potential energy.
P.E = 2 x 9.81 x 40
P.E = 784.8 J
2.
The ball is moving and has a height above the Earth's surface so it has both kinetic and potential energy.
P.E = same as part 1 = 784.8 J
K.E = 1/2 x 2 x 5²
K.E = 25 J
3.
The ball has no height above the Earth's surface and is moving so it has only kinetic energy.
K.E = 1/2 x 2 x 10²
K.E = 100 J
4.
50000 = 1/2 x 1000 x v²
v = 10 m/s
5.
39200 = 200 x 9.81 x h
h = 20.0 m
6.
12.5 = 1/2 x 1 x v²
v = 5 m/s
98 = 1 x 9.81 x h
h = 10.0 m
Answer:
a) heat it from 23.0 to 78.3
q = (50.0 g) (55.3 °C) (2.46 J/g·°C) =
b) boil it at 78.3
(39.3 kJ/mol) (50.0 g / 46.0684 g/mol) =
c) sum up the answers from the two calculations above. Be sure to change the J from the first calc into kJ
Explanation:
At 40 degrees Celsius, approximately 78 grams of potassium bromide can be dissolved.
The balanced reaction equation for the combustion of butane is as follows;
C₄H₁₀ + 13/2O₂ ---> 4CO₂ + 5H₂O
the limiting reactant in this reaction is C₄H₁₀ This means that all the butane moles are consumed and amount of product formed depends on the amount of C₄H₁₀ used up.
stoichiometry of C₄H₁₀ to H₂O is 1:5
mass of butane used - 6.97 g
number of moles - 6.97 g / 58 g/mol = 0.12 mol
then the number of water moles produced - 0.12 mol x 5 = 0.6 mol
Therefore mass of water produced - 0.6 mol x 18 g/mol = 10.8 g
By definition, a heavy element is a specific kind of element with a larger atomic mass. An element could be considered as "heavy" if its atomic number is greater already than 92. One of the known heavy elements on Earth is Tennessine and Tungsten while in the universe are lithium-5 and berryllium-8.