Answer:
This is because when the pedal sprocket arms are in the horizontal position, it is perpendicular to the applied force, and the angle between the applied force and the pedal sprocket arms is 90⁰.
Also, when the pedal sprocket arms are in the vertical position, it is parallel to the applied force, and the angle between the applied force and the pedal sprocket arms is 0⁰.
Explanation:
τ = r×F×sinθ
where;
τ is the torque produced
r is the radius of the pedal sprocket arms
F is the applied force
θ is the angle between the applied force and the pedal sprocket arms
Maximum torque depends on the value of θ,
when the pedal sprocket arms are in the horizontal position, it is perpendicular to the applied force, and the angle between the applied force and the pedal sprocket arms is 90⁰.
τ = r×F×sin90⁰ = τ = r×F(1) = Fr (maximum value of torque)
Also, when the pedal sprocket arms are in the vertical position, it is parallel to the applied force, and the angle between the applied force and the pedal sprocket arms is 0⁰.
τ = r×F×sin0⁰ = τ = r×F(0) = 0 (torque is zero).
Decreasing the mass of the car will help increase the acceleration of the car using application of Newton’s laws of motion.
<h3>
What is Newton's law of motion?</h3>
This law discusses the relationship between motion of a substance and the forces acting on it.
Heavy objects are more difficult to move which is why decrease in mass will help increase the acceleration.
Read more about Newton's law of motion here brainly.com/question/10454047
#SPJ1
Answer:
57.1 km/hr
Explanation:
To find the average speed you take the total distance divided by the total elapsed time.
So, the total distance is 140 + 60 = 200
the total elapsed time is found by taking 140/70=2 and 60/40=1.5
2+1.5=3.5
The plug the numbers into the equation,
200/3.5=57.1
Answer:
10.89 J.
Explanation:
The following data were obtained from the question:
Mass (m) = 12.5 kg
Velocity (v) = 1.32 m/s
Work done =?
To obtain the workdone, we shall determine the kinetic energy of the object since work and energy has the same unit of measurement. This is illustrated below:
Mass (m) = 12.5 kg
Velocity (v) = 1.32 m/s
Kinetic energy (K.E) =?
K.E = ½mv²
K.E = ½ × 12.5 × 1.32²
K.E = 6.25 × 1.7424
K.E = 10.89 J
The kinetic energy of the object is 10.89 J. Hence, the workdone in bringing the object to rest is 10.89 J.