Answer:
113 g NaCl
Explanation:
The Ideal Gas Law equation is:
PV = nRT
In this equation,
> P = pressure (atm)
> V = volume (L)
> n = number of moles
> R = 8.314 (constant)
> T = temperature (K)
The given values all have to due with the conditions fo F₂. You have been given values for all of the variables but moles F₂. Therefore, to find moles F₂, plug each of the values into the Ideal Gas Law equation and simplify.
(1.50 atm)(15.0 L) = n(8.314)(280. K)
2250 = n(2327.92)
0.967 moles F₂ = n
Using the Ideal Gas Law, we determined that the moles of F₂ is 0.967 moles. Now, to find the mass of NaCl that can react with F₂, you need to (1) convert moles F₂ to moles NaCl (via the mole-to-mole ratio using the reaction coefficients) and then (2) convert moles NaCl to grams NaCl (via molar mass from periodic table). It is important to arrange the ratios/conversions in a way that allows for the cancellation of units (the desired unit should be in the numerator).
1 F₂ + 2 NaCl ---> Cl₂ + 2NaF
Molar Mass (NaCl): 22.99 g/mol + 35.45 g/mol
Molar Mass (NaCl): 58.44 g/mol
0.967 moles F₂ 2 moles NaCl 58.44 g
---------------------- x ----------------------- x ----------------------- = 113 g NaCl
1 mole F₂ 1 mole NaCl
Answer:
The organs present inside the chest are :
1. The lungs
2. The heart
Explanation:
The chest cavity is also called as the thoracic cavity. It is the second largest hollow space of the body.In the bottom , it is enclosed by the diaphragm.
This cavity actually contain three space each round with mesothelium , pleural cavity and precardial cavity.
This contain the lungs , the tracheobronchial tree , the heart , the blood vessels which transport the blood between the heart and the lungs.
It also contain the esophagus .
Esophagus is the path through which the food passes from the mouth to the stomach.
Answer: 4.22 grams of solute is there in 278 ml of 0.038 M 
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.
where,
n = moles of solute
= volume of solution in L
Now put all the given values in the formula of molality, we get

mass of
= 
Thus 4.22 grams of solute is there in 278 ml of 0.038 M 