Answer:
Explanation:
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
Explanation:
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Chemical equation:
Mg + HCl → H₂ + MgCl₂
24 g + 36.5 g = 2 g+ 95 g
60.5 g = 97 g
The reaction does not hold the law of conservation of mass, because it is not balanced.
Balanced chemical equation:
Mg + 2HCl → H₂ + MgCl₂
24 g + 73 g = 2 g+ 95 g
97 g = 97 g
this equation completely follow the law of conservation of mass.
Answer:
a. polar solutes dissolve in polar solvents.
Explanation:
Polarity is a phenomenon that has to do with the positive and negative electric (ionic) charges of a molecule. A molecule with distinct positive and electric charge is said to be POLAR. However, water is said to be a universal solvent because it dissolves more substances than any other solvent can.
This solvent property of water is a function of its POLARITY. Polar solutes dissolve in polar solvents. Hence, only polar solutes can dissolve in water (a polar solvent). Hence, in this case, CH3OCH3 (ether) will dissolve in water because it is a POLAR molecule/solute.
Answer:
The new temperature will be 565.83 K.
Explanation:
Gay Lussac's law establishes the relationship between the temperature and the pressure of a gas when the volume is constant. This law says that the pressure of the gas is directly proportional to its temperature. This means that if the temperature increases, the pressure will increase; or if the temperature decreases, the pressure will decrease.
In other words, Gay-Lussac's law states that when a gas undergoes a constant volume transformation, the ratio of the pressure exerted by the gas temperature remains constant:

When an ideal gas goes from a state 1 to a state 2, it is true:

In this case:
- P1= 180 kPa
- T1= 291 K
- P2= 350 kPa
- T2= ?
Replacing:

Solving:

T2= 565.83 K
<u><em>The new temperature will be 565.83 K.</em></u>
We can solve the equation and show the solution below:
Oxygen atomic number is 16.
Phosphorus atomic number is 32.
We have the molecular weight:
Molecular weight = (31*4) + (16*10)
Molecular weight = 284 grams/mol
Solving for the grams:
0.4 mole (for P4) * (1 mol P4O10/1 mol P4) * (284 grams P4O10/1 mole P4O10)
Total grams = 113.6
The answer is 113.6 grams.
<span>Use the Ideal law Equation :
P.V= n.R.T
V = 0.5 L
P = 1.0 atm
</span><span>R= 0.0821 L*atm/mol*K
</span>
<span>n = R*T/P*V
</span><span>P*V= n*R*T
</span>
1.0 * 0.5 = n *<span>0.0821*298
0,5 = n* 24.4658
n = 0,5 / 24.4658
n =0.0204 moles
</span>