Answer: (C) conservation of matter
Solution: Law of conservation of matter or mass states that' total mass of the reactants should always be equal to the total mass of the product that is the total mass is remained conserved in a chemical reaction.
A balanced chemical equation always follow this law.
For example:

Mass of hydrogen = 1 g/mol
Mass of Oxygen = 16 g/mol
Total mass on the reactants = 2(2×1)+(2×16)= 36g/mol
Total mass on the product side = 2[(2×1) +16] = 36 g/mol
As,
Mass on reactant side = Mass on the product side
Therefore, a balanced chemical reaction follows Law of Conservation of mass.
Answer:
N = n× l
N = number of entities
n= moles
l = Avogadro's constant = 6.023 × 10^23
3.01 × 10^ 23 = n * 6.023 × 10^23
n = 3.01 × 10^23/6.023 × 10^23
n= 0.5moles
Molar mass = mass/ number of moles
Molar mass = 56
mass = 56 × 0.5
= 28g
Hope this helps.
Answer:
See explanation
Explanation:
The noble gas core electron configuration involves writing the inert gas core of an atom followed by the valence electrons. This is shown for the following atoms;
Bismuth;
[Xe]4f14 5d10 6s2 6p3
Chromium;
[Ar]4s1 3d5
Strontium;
[Kr]5s2
Phosphorus;
[Ne]3s2 3p3
2.
Bi
6p- n=6, l= 1, ml= 1, ms= 1/2
Cr
3d- n=3, l=2, ml=2,ms=1/2
Sr
5s- n=5, l=0, ml=0, ms=1/2
P
3p- n=3, l= 1, ml= 1, ms=1/2
3.
a) Tin (Sn) - [Kr] 5s2 4d10 5p2
b) Caesium (Cs)- [Xe] 6s1
c) Copper (Cu)- [Ar] 4s1 3d10
Answer:
Single replacement reaction
Explanation:
It's already balanced so it would just be Mg + H2SO4 --> H2 + MgSO4
The formula for a single replacement reaction is
A + BC --> B + AC
A=Mg
B=H2
C=SO4
Pressure what causes the molecules and matter to change .