Answer:
v = 7.69 x 10³ m/s = 7690 m/s
T = 5500 s = 91.67 min = 1.53 h
Explanation:
In order for the satellite to orbit the earth, the force of gravitation on satellite must be equal to the centripetal force acting on it:

where,
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
Me = Mass of Earth = 5.97 x 10²⁴ kg
r = distance between the center of Earth and Satellite = Radius of Earth + Altitude = 6.371 x 10⁶ m + 0.361 x 10⁶ m = 6.732 x 10⁶ m
v = orbital speed = ?
Therefore,

<u>v = 7.69 x 10³ m/s</u>
For time period satellite completes one revolution around the earth. It means that the distance covered by satellite is equal to circumference of circle at the given altitude.
So, its orbital speed can be given as:

where,
T = Time Period of Satellite = ?
Therefore,

<u>T = 5500 s = 91.67 min = 1.53 h</u>
Answer:
Explanation:
Given
radius of circular path
Position is given by
Differentiate 1 to angular velocity we get
Differentiate 2 to get angular acceleration
Net acceleration is the vector summation of tangential and centripetal force
Answer:
No they are totally different...
Velocity is displacement/time. while vector is both magnitude and direction.....
Velocity is a vector quantity because it has both magnitude and direction
Answer:
z
Explanation:
x repersents a new moon and the others repersent quarter moons
(x is a new moon because new moons are often the phase when the moon is close to earths sun)
Answer:
The Resultant Induced Emf in coil is 4∈.
Explanation:
Given that,
A coil of wire containing having N turns in an External magnetic Field that is perpendicular to the plane of the coil which is steadily changing. An Emf (∈) is induced in the coil.
To find :-
find the induced Emf if rate of change of the magnetic field and the number of turns in the coil are Doubled (but nothing else changes).
So,
Emf induced in the coil represented by formula
∈ =
...................(1)
Where:
.
{ B is magnetic field }
{A is cross-sectional area}
.
No. of turns in coil.
.
Rate change of induced Emf.
Here,
Considering the case :-
&
Putting these value in the equation (1) and finding the new emf induced (∈1)
∈1 =
∈1 =
∈1 =![4 [-N\times\frac{d\phi}{dt}]](https://tex.z-dn.net/?f=4%20%5B-N%5Ctimes%5Cfrac%7Bd%5Cphi%7D%7Bdt%7D%5D)
∈1 = 4∈ ...............{from Equation (1)}
Hence,
The Resultant Induced Emf in coil is 4∈.