Answer:
B
Explanation:
a force acting upon an object increases that objects acceleration
Answer:
Vi = 94.64 m/s
Explanation:
I order to find out the initial velocity of the object, we can use third equation of motion:
2ah = Vf² - Vi²
where,
a = acceleration = -9.8 m/s²
h = maximum height covered by object = 460 m - 3 m = 457 m
Vf = Final Velocity = 0 m/s (since, object momentarily stops at highest point)
Vi = Initial Velocity = ?
Therefore,
2(-9.8 m/s²)(457 m) = (0 m/s)² - Vi²
Vi = √8957.2 m²/s²
<u>Vi = 94.64 m/s</u>
Answer:
If a body is constantly accelerating the graph would be one-quadrant
Answer:
μ = 0.18
Explanation:
Let's use Newton's second Law, the coordinate system is horizontal and vertical
Before starting to move the box
Y axis
N-W = 0
N = W = mg
X axis
F -fr = 0
F = fr
The friction force has the formula
fr = μ N
fr = μ m g
At the limit point just before starting the movement
F = μ m g
μ = F / m g
calculate
μ = 34.8 / (19.8 9.8)
μ = 0.18
Answer:

Explanation:
Given that the airplane starts from the rest (this is initial velocity equals to zero) and accelerates at a constant rate, position can be described like this:
where x is the position, t is the time a is the acceleration and
is initial velocity. In this way acceleration can be found.
.
Now we are able to found velocity at any time with the formula: 