1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Radda [10]
4 years ago
7

Which of these statements is true?

Physics
2 answers:
snow_lady [41]4 years ago
7 0
B). Some elements found in nature exist as molecules. 
That is, their atoms travel around in bound pairs. 
Examples are Hydrogen, Oxygen, and Nitrogen.

A). No.  Without atoms, you can't make a molecule.

C). No.  A compound is a chemical combination of two or more elements.

D). No.  An atom is the smallest unit of ONE single element.
Oduvanchick [21]4 years ago
5 0

Hello, your answer is, C. Some compounds include only one type of element.

I hope it helped!

You might be interested in
Microphone Electricity needs
Finger [1]
Sound—energy<span> we can hear—travels only so far before it soaks away into the world around us. Until electrical </span>microphones<span>were invented in the late 19th century, there was no satisfactory way to send </span>sounds<span> to other places. You could shout, but that carried your words only a little further. You couldn't shout in New York City and make yourself heard in London. And you couldn't speak in 1715 and have someone listen to what you said a hundred years later! Remarkably, such things are possible today: by converting sound energy into electricity and information we can store, microphones make it possible to send the sounds of our voices, our music, and the noises in our world to other places and other times. How do microphones work? Let's take a closer look!</span>
3 0
3 years ago
A ball filled with an unknown material starts from rest at the top of a 2 m high incline that makes a 28o with respect to the ho
Lady_Fox [76]

Answer:

<u>Searching in google I found the total mass and the radius of the ball (m = 1.5 kg and r = 10 cm) which are needed to solve the problem!</u>  

The ball rotates 6.78 revolutions.

     

Explanation:

<u>Searching in google I found the total mass and the radius of the ball (m = 1.5 kg and r = 10 cm) which are needed to solve the problem!</u>        

At the bottom the ball has the following angular speed:

\omega_{f} = \frac{v_{f}}{r} = \frac{4.9 m/s}{0.10 m} = 49 rad/s

Now, we need to find the distance traveled by the ball (L) by using θ=28° and h(height) = 2 m:

sin(\theta) = \frac{h}{L} \rightarrow L = \frac{h}{sin(\theta)} = \frac{2 m}{sin(28)} = 4.26 m

To find the revolutions we need the time, which can be found using the following equation:                

v_{f} = v_{0} + at  

t = \frac{v_{f} - v_{0}}{a} (1)

So first, we need to find the acceleration:

v_{f}^{2} = v_{0}^{2} + 2aL \rightarrow a = \frac{v_{f}^{2} - v_{0}^{2}}{2L}    (2)  

By entering equation (2) into (1) we have:

t = \frac{v_{f} - v_{0}}{\frac{v_{f}^{2} - v_{0}^{2}}{2L}}

Since it starts from rest (v₀ = 0):  

t = \frac{2L}{v_{f}} = \frac{2*4.26 m}{4.9 m/s} = 1.74 s

Finally, we can find the revolutions:  

\theta_{f} = \frac{1}{2} \omega_{f}*t = \frac{1}{2}*49 rad/s*1.74 s = 42.63 rad*\frac{1 rev}{2\pi rad} = 6.78 rev

Therefore, the ball rotates 6.78 revolutions.

I hope it helps you!                                                                                                                                                                                          

3 0
3 years ago
The burning of a log releases the logs chemical_energy into other forms of energy
saul85 [17]

Answer:

When we burn wood we are releasing solar energy, in the form of heat, that has been stored in the wood as chemical energy. The process of photosynthesis converted solar energy, water and carbon dioxide into oxygen and the organic molecules that form the wood, half the weight of which is carbon.

Explanation:

7 0
3 years ago
Review. From a large distance away, a particle of mass 2.00 g and charge 15.0σC is fired at 21.0 i^ m/s straight toward a second
MissTica

(a)

Determine the system's initial configuration at ri = infinite particle separation and the system's final configuration at the point of closest approach.

Since the two-particle system is not being affected by any outside forces, we may treat it as an isolated system for momentum and use the momentum conservation law.

m1v1 + m1v2 = (m1+m2)v

The second particle's starting velocity is zero, so:

m1v1  = (m1+m2)v

After substituting the values we get,

v = 6i m/s

(b)

Since the two particle system is also energy-isolated, we may use the energy-conservation principle.

dK + dU = 0

Ki +Ui = Kf + Uf

Substituting the values,

1/2m1v1^2i + 1/2 m2v2^2i + 0 = 1/2m1v1^2f + 1/2m2v2^2f +ke q1q2/rf

The second particle's initial speed is 0 (v2 = 0). Additionally, both the first and second particle's final velocity have the same value, v. Put these values in place of the preceding expression:

1/2m1v1^2i  = 1/2m1v1^2 + 1/2m2v2^2 +ke q1q2/rf

After solving we get,

rf = 2ke q1q2 / m1v1^2 - (m1+m2)v^2

Substituting the values we get,

rf = 3.64m

(c)

v1f = (m1-m2 / m1 + m2) v1i

v1f  = -9i m/s

(d)

v2f =  (2m1/ m1 +m2) v1i

After substituting the values,

v2f = 12i m/ s

Question :

Review. From a large distance away, a particle of mass 2.00 g and charge 15.0 \muμC is fired at 21.0 m/s straight toward a second particle, originally stationary but free to move, with mass 5.00 g and charge 8.50 \muμC. Both particles are constrained to move only along the x axis. (a) At the instant of closest approach, both particles will be moving at the same velocity. Find this velocity. (b) Find the distance of closest approach. After the interaction, the particles will move far apart again. At this time, find the velocity of (c) the 2.00-g particle and (d) the 5.00-g particle. \hat{i}

To learn more about  momentum conservation law click on the link below:

brainly.com/question/7538238

#SPJ4

5 0
2 years ago
Suppose a plane accelerates from rest for 30 s, achieving a takeoff speed of 80 m/s after traveling a distance of 1200 m down th
Margaret [11]

Answer:

300 m

Explanation:

The train accelerate from the rest so u = 0 m/sec

Final speed that is v = 80 m/sec

Time t = 30 sec

The distance traveled by first plane = 1200 m

We know the equation of motion S=ut+\frac{1}{2}at^2 where s is distance a is acceleration and u is initial velocity

Using this equation for first plane 1200=0\times 30+\frac{1}{2}a30^2

a=2.67\frac{m}{sec^2}

As the acceleration is same for both the plane so a for second plane will be 2.67 \frac{m}{sec^2}

The another equation of motion is v^2=u^2+2as using this equation for second plane 40^2=0+2\times 2.67\times s

s = 300 m

5 0
3 years ago
Other questions:
  • A battery with an emf of 1.50 V has an internal resistance r. When connected to a resistor R, the terminal voltage is 1.40 V and
    15·1 answer
  • Why is chemical energy a form of potential energy
    12·1 answer
  • A truck covers 40.0 m in 7.45 s while uniformly slowing down to a final velocity of 2.35 m/s.
    7·1 answer
  • Model the concrete slab as being surrounded on both sides (contact area 24 m2) with a 2.1-m-thick layer of air in contact with a
    14·1 answer
  • A motorcycle starts at rest and accelerates at a rate of 3 meters per second squared (m/s2) over a time period of 5 seconds (s).
    15·1 answer
  • CAN ANY KNE DO YHIS I WILL DIE <br> PLEASE I MEES HE ASAP
    15·1 answer
  • Ulesr...<br> 4.What makes the molecular shape of Co, and NH, different? (2 points)<br> luence.
    7·1 answer
  • The physical quantity represented as rate of change of change in position in a
    12·1 answer
  • The picture shows what happens when light shines on a tank of water.
    15·2 answers
  • How does lightning occur?​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!