1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna71 [15]
4 years ago
10

The atoms or molecules in solids have no motion. true or false

Chemistry
1 answer:
Anarel [89]4 years ago
5 0
False.

The atoms or molecules do have motion, but it is barely detectable.
You might be interested in
i am begging anyone to help me with this! (all tutors i've asked said they can't solve it but i need someone to help me out) - i
9966 [12]

First, we need to calculate how much energy we will get from this combustion.

Assuming the combustion is complete, we have the octane reacting with O₂ to form only water and CO₂, so:

C_8H_{18}+O_2\to CO_2+H_2O

We need to balance the reaction. Carbon only appear on two parts, so, we can start by it:

C_8H_{18}+O_2\to8CO_2+H_2O

Now, we balance the hydrogen:

C_8H_{18}+O_2\to8CO_2+9H_2O

And in the end, the oxygen:

C_8H_{18}+\frac{25}{2}O_2\to8CO_2+9H_2O

We can multiply all coefficients by 2 to get integer ones:

2C_8H_{18}+25O_2\to16CO_2+18H_2O

Now, we need to use the enthalpies of formation to get the enthalpy of reaction of this reaction.

The enthalpy of reaction can be calculated by adding the enthalpies of formation of the products multiplied by their stoichiometric coefficients and substracting the sum of enthalpies of formation of the reactants multiplied by their stoichiometric coefficients.

For the reactants, we have (the enthalpy of formation of pure compounds is zero, which is the case for O₂):

\begin{gathered} \Delta H\mleft\lbrace reactants\mright\rbrace=2\cdot\Delta H\mleft\lbrace C_8H_{18}\mright\rbrace+25\cdot\Delta H\mleft\lbrace O_2\mright\rbrace \\ \Delta H\lbrace reactants\rbrace=2\cdot(-250.1kJ)+25\cdot0kJ \\ \Delta H\lbrace reactants\rbrace=-500.2kJ+0kJ \\ \Delta H\lbrace reactants\rbrace=-500.2kJ \end{gathered}

For the products, we have:

\begin{gathered} \Delta H_{}\mleft\lbrace product\mright\rbrace=16\cdot\Delta H\lbrace CO_2\rbrace+18\cdot\Delta H\lbrace H_2O\rbrace \\ \Delta H_{}\lbrace product\rbrace=16\cdot(-393.5kJ)+18\cdot(-285.5kJ) \\ \Delta H_{}\lbrace product\rbrace=-6296kJ-5139kJ \\ \Delta H_{}\lbrace product\rbrace=-11435kJ \end{gathered}

Now, we substract the rectants from the produtcs:

\begin{gathered} \Delta H_r=\Delta H_{}\lbrace product\rbrace-\Delta H\lbrace reactants\rbrace \\ \Delta H_r=-11435kJ-(-500.2kJ) \\ \Delta H_r=-10934.8kJ \end{gathered}

Now, this enthalpy of reaction is for 2 moles of C₈H₁₈, so for 1 mol of C₈H₁₈ we have half this value:

\Delta H_c=\frac{1}{2}\Delta H_r=\frac{1}{2}\cdot(-10934.8kJ)=-5467.4kJ

Now, we have 100 g of C₈H₁₈, and its molar weight is approximately 114.22852 g/mol, so the number of moles in 100 g of C₈H₁₈ is:

\begin{gathered} M_{C_8H_{18}}=\frac{m_{C_8H_{18}}}{n_{C_8H_{18}}} \\ n_{C_8H_{18}}=\frac{m_{C_8H_{18}}}{M_{C_8H_{18}}}=\frac{100g}{114.22852g/mol}\approx0.875438mol \end{gathered}

Since we have approximately 0.875438 mol, and 1 mol releases -5467.4kJ when combusted, we have:

Q=-5467.4kJ/mol\cdot0.875438mol\approx-4786.37kJ

Now, for the other part, we need to calculate how much heat it is necessary to melt a mass, <em>m</em>.

First, we have to heat the ice to 0 °C, so:

\begin{gathered} Q_1=m\cdot2.010J/g.\degree C\cdot(0-(-10))\degree C \\ Q_1=m\cdot2.010J/g\cdot10 \\ Q_1=m\cdot20.10J/g \end{gathered}

Then, we need to melt all this mass, so we use the latent heat now:

Q_2=n\cdot6.03kJ/mol

Converting mass to number of moles of water we have:

\begin{gathered} M=\frac{m}{n} \\ n=\frac{m}{M}=\frac{m}{18.01528g/mol} \end{gathered}

So:

Q_2=\frac{m}{18.01528g/mol}_{}\cdot6.03kJ/mol\approx m\cdot0.334716kJ/g

Adding them, we have a total heat of:

\begin{gathered} Q_T=m\cdot20.10J/g+m\cdot0.334716kJ/g \\ Q_T=m\cdot0.02010kJ/g+m\cdot0.334716kJ/g \\ Q_T=m\cdot0.354816kJ/g \end{gathered}

Since we have a heat of 4786.37 kJ form the combustion, we input that to get the mass (the negative sign is removed because it only means that the heat is released from the reaction, but now it is absorbed by the ice):

\begin{gathered} 4786.37kJ=m\cdot0.354816kJ/g \\ m=\frac{4786.37kJ}{0.354816kJ/g}\approx13489g\approx13.5\operatorname{kg} \end{gathered}

Since we have a total of 20kg of ice, we can clculate the percent using it:

P=\frac{13.5\operatorname{kg}}{20\operatorname{kg}}=0.675=67.5\%

5 0
1 year ago
A student conducting the iodine clock experiment accidentally makes an s2o32- stock solution that is too concentrated. how will
cupoosta [38]
Adding (S2O3)2- would affect the reaction mechanism that involves this ion. From the reaction mechanism given above, the equilibrium of step 2 would be affected. Adding the stock solution of (S2O3)2- would shift the equilibrium to the right thus making more products of the said mechanism. Also, the reaction rate of this step would occur faster than the original rate. This is based on Le Chatelier's Prinicple which states that a corresponding change would happen to the equilibrium of a reaction when pressure, concentration of the substances or temperature is changed. So, that after the addition, a color change would appear immediately because I3- would be removed slowly from solution, and would therefore be able to react with starch. 

8 0
3 years ago
What is the longest wavelength in the Balmer series? (Hint: the Rydberg constant for Hydrogen is 1.096776×107 1/m, and the Balme
boyakko [2]

<u>Answer:</u> The longest wavelength of light is 656.5 nm

<u>Explanation:</u>

For the longest wavelength, the transition should be from n to n+1, where: n = lower energy level

To calculate the wavelength of light, we use Rydberg's Equation:

\frac{1}{\lambda}=R_H\left(\frac{1}{n_i^2}-\frac{1}{n_f^2} \right )

Where,

\lambda = Wavelength of radiation

R_H = Rydberg's Constant  = 1.096776\times 10^7m^{-1}

n_f = Higher energy level = n_i+1=(2+1)=3

n_i= Lower energy level = 2    (Balmer series)

Putting the values in above equation, we get:

\frac{1}{\lambda }=1.096776\times 10^7m^{-1}\left(\frac{1}{2^2}-\frac{1}{3^2} \right )\\\\\lambda =\frac{1}{1.5233\times 10^6m^{-1}}=6.565\times 10^{-7}m

Converting this into nanometers, we use the conversion factor:

1m=10^9nm

So, 6.565\times 10^{-7}m\times (\frac{10^9nm}{1m})=656.5nm

Hence, the longest wavelength of light is 656.5 nm

4 0
3 years ago
What mass of H₂ is needed to react with 8.75 g of O₂ according to the following equation: O2(g) + H2(g) → H₂O(g)?
FromTheMoon [43]

Explanation:

For reacting with 8.75 grams of oxygen, 1.08 grams of hydrogen is required.

The given balanced equation has been:

\rm O_2\;+\;2\;H_2\;\rightarrow\;H_2OO2+2H2→H2O

From the equation, 1 mole of oxygen reacts with 2 mole of hydrogen to give 1 mole of water.

The mass of oxygen has been: 8.75 g,

Moles = \rm \dfrac{weight}{molecular\;weight}molecularweightweight

Moles of oxygen = \rm \dfrac{8.75}{32}328.75

Moles of oxygen = 0.27 mol

Since,

1 mole Oxygen = 2 mole hydrogen

0.21 mol oxygen = 0.54 mol hydrogen

Mass of hydrogen = moles \times× molecular weight

Mass of hydrogen = 0.54 \times× 2

Mass of hydrogen = 1.08 grams.

Thus, for reacting with 8.75 grams of oxygen, 1.08 grams of hydrogen is required.

6 0
2 years ago
Give three examples, from the lab, where potential energy was converted to kinetic energy.
GREYUIT [131]

Give 3 Examples of where potential energy was converted to knlinetic energy:

Curtain

A ball before moving

An apple from the tree then falling down

When the Curtains are still, we call the that potential energy. If you move the curtains around, that is kinetic energy

The ball is still, that is potential energy. Then the ball is moving, the is kinetic energy

There is a apple ganging from a tree, that is potential energy. That apple is fall, this is kinetic energy

Hope this helps

Don't type or write in the answer, I'm not sure what from the lab means. These are a few potential into kinetic energy I could have think of!

4 0
3 years ago
Other questions:
  • Does the suns light exhibit an emission spectrum?
    5·1 answer
  • Which of the following is the best example of a scientific law?
    10·2 answers
  • The matter through which waves travel is called a/an​
    5·1 answer
  • HELP!!! What two volume units have the same value?
    12·2 answers
  • Please help!!! ASAP
    15·1 answer
  • Generally, does the size of a radioactive sample affect half-life?
    8·2 answers
  • A mixture of coarse sand and sugar is 45.0 percent sand by mass. 120.0 grams (g) of the mixture is placed in a fine-mesh cloth b
    9·1 answer
  • An animal is an example of a/an-<br><br> A: tissue <br> B:cell type<br> C:organ<br> D:organism
    6·2 answers
  • Which of the following is NOT true about wastewater and wastewater treatment?
    8·1 answer
  • 1. What is the mass of 2.23 x 1023 atoms of sulfur?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!