Answer:
a) K = [ CO2(g) ]
⇒ the [ CaCO3(s) ] does not appear in the denominator of the equilibrium constant, as it is a pure solid substance.
b) Kp = K (RT)∧Δn
⇒ the values of K and Kp are not the same
c) K >> 1, The reaction has a high yield and is said to be shifted to the right. then the rate of the forward reaction is greater than the rate of the reverse reaction at equilibrium.
Explanation:
a) CaCO3(s) ↔ CaO(s) + CO2(g)
⇒ K = [ CO2(g) ]
∴ the [ CaCO3(s) ] does not appear in the denominator of the equilibrium constant, as it is a pure solid substance.
b) H2(g) + F2(g) ↔ 2 HF(g)
⇒ K = [ HF(g) ] ² / [ F2(g) ] * [ H2(g) ]
⇒ Kp = PHF² / PF2 * PH2
for ideal gas:
PV = RTn
⇒ P = n/V RT = [ ] RT
⇒ Kp = K (RT)∧Δn
⇒ the values of K and Kp are not the same.
c) K >> 1, The reaction has a high yield and is said to be shifted to the right. then the rate of the forward reaction is greater than the rate of the reverse reaction at equilibrium.
Answer:
0.48
Explanation:

because we are looking for I which is current we say
I = 12÷25 which is 0.48.
Acid rain is formed by chemicals let off into the atmosphere further introducing the nitrogen oxides which are attached to the water vapour and than mixed together further making acid rain which contains a pH scale of 6 a pale light acid though very much effective.
Please refer back if needed further assistance.
Hope this helps and enlightens your day. Enjoy...
<span>O2 travels slower than H2, Ne, N2, and CO. This is due to the fact that O2 has a heavier molecular weight than the others. O2 has a weight of 32 grams per mole. N2 and CO are the next highest with 28 grams per mole. Ne is 20 grams per mole, and H2 is 2 grams per mole.</span>
Answer:
everything (matter) is made up of molecules(atoms)
Explanation: