Answer:
x = 0.396 m
Explanation:
The best way to solve this problem is to divide it into two parts: one for the clash of the putty with the block and another when the system (putty + block) compresses it is spring
Data the putty has a mass m1 and velocity vo1, the block has a mass m2
. t's start using the moment to find the system speed.
Let's form a system consisting of putty and block; For this system the forces during the crash are internal and the moment is preserved. Let's write the moment before the crash
p₀ = m1 v₀₁
Moment after shock
= (m1 + m2) 
p₀ =
m1 v₀₁ = (m1 + m2) 
= v₀₁ m1 / (m1 + m2)
= 4.4 600 / (600 + 500)
= 2.4 m / s
With this speed the putty + block system compresses the spring, let's use energy conservation for this second part, write the mechanical energy before and after compressing the spring
Before compressing the spring
Em₀ = K = ½ (m1 + m2)
²
After compressing the spring
= Ke = ½ k x²
As there is no rubbing the energy is conserved
Em₀ = 
½ (m1 + m2)
² = = ½ k x²
x =
√ (k / (m1 + m2))
x = 2.4 √ (11/3000)
x = 0.396 m
I don’t know sorry ;khbadkhb didhwbck( khwdicdwbihwd
Answer:
5. -24 m/s²
Explanation:
Acceleration: This can be defined as the rate of change of velocity.
The S.I unit of acceleration is m/s².
mathematically,
a = dv/dt ............................ Equation 1
Where a = acceleration, dv/dt = is the differentiation of velocity with respect to time.
But
v = dx(t)/dt
Where,
x(t) = 27t-4.0t³...................... Equation 2
Therefore, differentiating equation 2 with respect to time.
v = dx(t)/dt = 27-12t²............. Equation 3.
Also differentiating equation 3 with respect to time,
a = dv/dt = -24t
a = -24t .................... Equation 4
from the question,
At the end of 1.0 s,
a = -24(1)
a = -24 m/s².
Thus the acceleration = -24 m/s²
The right option is 5. -24 m/s²
b). The power depends on the RATE at which work is done.
Power = (Work or Energy) / (time)
So to calculate it, you have to know how much work is done AND how much time that takes.
In part (a), you calculated the amount of work it takes to lift the car from the ground to Point-A. But the question doesn't tell us anywhere how much time that takes. So there's NO WAY to calculate the power needed to do it.
The more power is used, the faster the car is lifted. The less power is used, the slower the car creeps up the first hill. If the people in the car have a lot of time to sit and wait, the car can be dragged from the ground up to Point-A with a very very very small power ... you could do it with a hamster on a treadmill. That would just take a long time, but it could be done if the power is small enough.
Without knowing the time, we can't calculate the power.
...
d). Kinetic energy = (1/2) · (mass) · (speed squared)
On the way up, the car stops when it reaches point-A.
On the way down, the car leaves point-A from "rest".
WHILE it's at point-A, it has <u><em>no speed</em></u>. So it has no (<em>zero</em>) kinetic energy.