Answer:
Tension in the string is equal to 58.33 N ( this will be the strength of the string )
Explanation:
We have given mass m = 1.7 kg
radius of the circle r = 0.48 m
Kinetic energy is given 14 J
Kinetic energy is equal to 
So 

v = 4.05 m/sec
Centripetal force is equal to 
So tension in the string will be equal to 58.33 N ( this will be the strength of the string )
Answer:
3360 N
Explanation:
In a first-class lever, the effort force and load force are on opposite sides of the fulcrum.
The lever is 5 m long. The load force is 1.50 m from the fulcrum, so the effort force must be 3.50 m from the fulcrum.
The torques are equal:
Fr = Fr
(1440 N) (3.5 m) = F (1.5 m)
F = 3360 N
<span>assuming the pitch is 100yards long, the player runs 100yards to the other goal then a further 50 yards back to the 50-yard line. So he/she runs 150yards in 18s
150/18 = 8.33yards per second average speed.
Initial velocity = 0, average velocity =8.33
Vav = (Vinitial+Vfinal)/2
Vav = 4.16m/s</span>
15.277.. j. I did the problem using a proportion. an additional 3.7m to the current 1.8 cm=5.5cm.
Therefore, 5.0 j/1.8cm=x/5.5cm
Answer:
B/4
Explanation:
The magnetic field strength is inversely proportional to the square of the distance from the current. At double the distance, the strength will be 1/2^2 = 1/4 of that at the original distance:
The field at twice the distance is B/4.