1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lana66690 [7]
3 years ago
10

Which of the following states that absolute zero cannot be reached?

Physics
2 answers:
olganol [36]3 years ago
4 0
The second and third laws of thermodynamics states that absolute zero cannot be reached. The correct option among all the options that are given in the question is the third option or option "C". Both the laws actually deal with the relations that exist between heat and other forms of energy. I hope the answer helps you.
Mademuasel [1]3 years ago
4 0

Answer:

D. the third law of thermodynamics

Explanation:

As per third law of thermodynamics we know that entropy of a perfect crystal comes to zero when the temperature of the crystal reaches to absolute zero.

So as per the theory of entropy we know that entropy of a system cannot be zero as it will reach zero then system will not exist.

So here we can say that

As per third law it is not possible to achieve zero kelvin or absolute zero temperature because at that temperature the entropy will become zero and then the system will not exist in that case.

So here we can say the correct answer will be

D. the third law of thermodynamics

You might be interested in
The price of coffee fell sharply last month, while the quantity sold remained the same. Five people suggest various explanations
miss Akunina [59]

Answer:

France. True Supply increased and demand did not adapt

Explanation:

If the price of coffee decreases it may be due to two causes

- Increase of the offer

- decrease in demand

- both simultaneously.

Let's examine the statement. They tell us that the amount sold remained constant, so there is no decrease in demand, therefore the only cause may be the increase in supply.

Let's check the answers

Antonio     False. The demand is constant.

Carolina.   False. The demand is constant.

Dmitri        False. The demand is constant.

France.     True Supply increased and demand did not adapt

Jake.         False. Demand did not adapt to the increase in supply

7 0
3 years ago
A garden hose with a diameter of 0.64 in has water flowing in it with a speed of 0.46 m/s and a pressure of 1.9 atmospheres. At
STALIN [3.7K]

Answer:

(a).The speed of the water in the nozzle is 3.014 m/s.

(b). The pressure in the nozzle is 1.86 atm.

Explanation:

Given that,

Nozzle diameter = 0.25 in = 0.00635 m

Hose pipe diameter = 0.64 in = 0.016256 m

Pressure = 1.9 atm =192518 Pa

(a). We need to calculate the speed of the water in the nozzle

Flow Speed at the inlet pipe will be given by using Continuity Equation

Q_{1}=Q_{2}

v_{1}A_{1}=v_{2}A_{2}

v_{1}=v_{2}\times(\dfrac{A_{2}}{A_{1}})

Where, A = area of pipe

A=\pi\times \dfrac{d^2}{4}

v_{1}=v_{2}\times(\dfrac{d_{2}^2}{d_{1}^2})

Put the value into the formula

v_{1}=0.46\times\dfrac{(0.016256)^2}{(0.00635)^2}

v_{1}=3.014\ m/s

The speed of the water in the nozzle is 3.014 m/s.

(b). We need to calculate the pressure in the nozzle

Using Bernoulli's Theorem,

P_{1}+\dfrac{1}{2}\rho\times v_{1}^2+\rho gh_{1}=P_{2}+\dfrac{1}{2}\rho\times v_{2}^2+\rho gh_{2}

Where, h_{1}=h_{2}

P_{1}+\dfrac{1}{2}\rho\times v_{1}^2=P_{2}+\dfrac{1}{2}\rho\times v_{2}^2

P_{1}=P_{2}+\dfrac{1}{2}\rho(v_{2}^2-v_{1}^2)

Put the value into the formula

P_{1}=192518 +\dfrac{1}{2}\times1000\times((0.46)^2-(3.014)^2)

P_{1}=188081.702\ Pa

P=1.86\ atm

Hence, (a).The speed of the water in the nozzle is 3.014 m/s.

(b). The pressure in the nozzle is 1.86 atm.

7 0
3 years ago
Find the volume of a rectangular prism that is 8m long, 4m wide, and 300cm high
konstantin123 [22]
  • L=8m
  • B=4m
  • H=300cm=3m

\\ \bull\tt\longmapsto Volume=LBH

\\ \bull\tt\longmapsto Volume=8(4)(3)

\\ \bull\tt\longmapsto Volume=96m^3

6 0
3 years ago
Read 2 more answers
What must be the acceleration of a train in order for it to stop 12 m/s in a distance if 541 m
earnstyle [38]

Answer:

The acceleration of the train must be - 0.133 m/s²

Explanation:

Lets explain how to solve the problem

A train in order for it to stop 12 m/s in a distance if 541 m

That means the initial velocity of the train is 12 m/s

Its final velocity is zero (stop)

The distance it covers is 541 m

We want to find its acceleration

The acceleration will be negative quantity because the train reduced its

velocity from 12 m/s to zero

We need rule contains velocity, acceleration and distance

So we will use ⇒<em> v² = u² + 2as</em>, where v is the final velocity, u is the

initial velocity, a is the acceleration and s is the distance

v = 0, u = 12 m/s, s = 541 m

Substitute these values in the rule

(0)² = (12)² + 2(a)(541)

0 = 144 + 1082 a

Subtract 144 from both sides

-144 = 1082 a

Divide both sides by 1082

- 0.133 = a

<em>The acceleration of the train must be - 0.133 m/s²</em>

3 0
3 years ago
Two identical loudspeakers are placed on a wall 1.00 m apart. A listener stands 4.00 m from the wall directly in front of one of
natita [175]

Answer:

The phase difference is 0.659 rad.

Explanation:

Given that,

Distance between two identical loudspeakers d= 1.00  m

Distance between speakers and listener r= 4.00 m

Frequency = 300 Hz

Suppose we need to find the phase difference in radian between the waves from the speakers when they reach the observer

We need to calculate the r'

Using Pythagorean theorem

r'=\sqrt{d^2+r^2}

Where, d = distance between two identical loudspeakers

r = distance between speakers and listener

Put the value into the formula

r'=\sqrt{(1.00)^2+(4.00)^2}

r'=\sqrt{1.00+16.00}

r'=4.12\ m

We need to calculate the path difference

Using formula of path difference

|r'-r|=4.12-4.00

|r'-r|=0.12\ m

We need to calculate the wavelength

Using formula of wavelength

\lambda=\dfrac{v}{f}

Where, v = speed of sound

f = frequency

Put the value into the formula

\lambda=\dfrac{343}{300}

\lambda=1.143\ m

We need to calculate the phase difference

Using formula of phase difference

\phi=\dfrac{2\pi\times|r'-r| }{\lambda}

\phi=\dfrac{2\pi\times0.12}{1.143}

\phi=0.659\ rad

Hence, The phase difference is 0.659 rad.

7 0
4 years ago
Other questions:
  • A 400-turn circular coil (radius = 1.0 cm) is oriented with its plane perpendicular to a uniform magnetic field which has a magn
    10·1 answer
  • Which of the following is a supersonic speed? Mach 0.005 Mach 0.05 Mach 0.5 Mach 5
    10·2 answers
  • A bike moves. 50 m in 10 seconds calculate the speed of the bike
    13·1 answer
  • _____ is the nonpersonal, paid communication a company places to influence consumer purchases.
    9·1 answer
  • An athlete swings a ball, connected to the end of a chain, in a horizontal circle. The athlete is able to rotate the ball at the
    13·1 answer
  • Multiple Select
    6·2 answers
  • What is the name of the theory that led to the development of the theory of plate tectonics
    6·2 answers
  • HELP DUE 3 MINUTESsssss
    7·2 answers
  • 4. Find the density of 2750 g of a substance that occupies 250 mL.​
    9·1 answer
  • Use of a buffered temperature probe is the most accurate way to measure actual vaccine temperatures.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!