To calculate the new pressure, we can use Boyle’s law to relate these two scenarios (Boyle’s law is used because the temperature is assumed to remain constant). Boyle’s law is:
P1V1 = P2V2,
Where “P” is pressure and “V” is volume. The pressure and volume of the first scenario is 215 torr and 51 mL, respectively, and the second scenario has a volume of 18.5 L (18,500 mL) and the unknown pressure - let’s call that “x”. Plugging these into the equation:
(215 torr)(51 mL) =(“x” torr)(18,500 mL)
x = 0.593 torr
The final pressure exerted by the gas would be 0.593 torr.
Hope this helps!
Answer:
Concentration, because the amounts of reactants and products remain constant after equilibrium is reached.
Explanation:
The rate of reaction refers to the amount of reactants converted or products formed per unit time.
As the reaction progresses, reactions are converted into products. This continues until equilibrium is attained in a closed system.
When equilibrium is attained, the rate of forward reaction is equal to the rate of reverse reaction, hence the concentration of reactants and products in the system remain fairly constant over time.
When deducing the rate of reaction, concentration of the specie of interest is plotted on the y-axis against time on the x-axis.
Answer:
See explanation
Explanation:
The use of Uranium - 234 to generate electricity depends on a fission reaction. The uranium nuclide is bombarded by fast moving neutrons leading to a chain reaction. Control rods and moderators are used to keep the nuclear reaction under control.
As the nuclear reaction proceeds, heat is generated and steam is consequently produced. This steam is used to turn a turbine and electricity is thereby generated.
Answer: 19.25 gallons
Explanation: 1 ml = 0.0011 quart
Given: 4 quarts = 1 gallon
Thus if 1 ml is equal to 0.0011 quart
70000 ml is equal to =
Now if 4 quarts is equal to 1 gallon.
77 quarts is is equal to=