Answer:
A
Explanation:
Please see the attached picture for the full solution.
Since we are only concerned about the decrease in gravitational potential energy of the car, we look at the decrease in height of the car as it moves from point X to point Y, instead of the distance travelled by the car.
The standard unit is KW/hr, = 1,000W/hr.
(85 + 60) = 145W.
You need to find its fraction of 1,000W., so (145/1000) = 0.145 KWH.
(0.145 x 10p) = 1.45p. per hr.
During the phase transition vapour --> liquid water, the temperature of the water does not change; the molecules of water release heat and the amounf of heat released is equal to

where
m is the mass of the water

is the latent heat of evaporation.
For water, the latent heat of evaporation is

, while the mass of the water is

so, the amount of heat released in the process is
Answer:
The final temperature of the gas is <em>114.53°C</em>.
Explanation:
Firstly, we calculate the change in internal energy, ΔU from the first law of thermodynamics:
ΔU=Q - W
ΔU = 1180 J - 2020 J = -840 J
Secondly, from the ideal gas law, we calculate the final temperature of the gas, using the change in internal energy:


Then we make the final temperature, T₂, subject of the formula:



Therefore the final temperature of the gas, T₂, is 114.53°C.