The answer to your equation is c
Answer:
Following two compounds have Hydrogen Bond Interactions;
1) CH₃(CH₂)₂NH₂ (Propan-1-amine)<span>
2) </span>CH₃(CH₂)₂NH(CH₂)₄CH₃ (N-propylpentan-1-amine)
Explanation:
Hydrogen Bond Interactions are formed between those molecules which has hydrogen atoms covalently bonded to most electronegative atoms like Fluorine, Oxygen and Nitrogen. This direct attachment of Hydrogen to electronegative atom makes it partial positive resulting in hydrogen bonding with neighbor's partial negative most electronegative atom. So, in above selected compounds it can be seen that both compounds contain hydrogen atoms directly attached to Nitrogen atoms, Therefore, allowing them to form Hydrogen Bonding Interactions.
The majority of wind turbines consist of three blades mounted to a tower made from tubular steel. There are less common varieties with two blades, or with concrete or steel lattice towers. At 100 feet or more above the ground, the tower allows the turbine to take advantage of faster wind speeds found at higher altitudes.
Turbines catch the wind's energy with their propeller-like blades, which act much like an airplane wing. When the wind blows, a pocket of low-pressure air forms on one side of the blade. The low-pressure air pocket then pulls the blade toward it, causing the rotor to turn. This is called lift. The force of the lift is much stronger than the wind's force against the front side of the blade, which is called drag. The combination of lift and drag causes the rotor to spin like a propeller. So therefore your answer would be A.
If this helped could you leave a brainlyest?
Hi,
The statement is true, as the volume of a sample depends on its size.
I hope this helps. If I was not clear enough or if you’d like further explanation please let me know. Also, English is not my first language, so I’m sorry for any mistakes.
<span>0.310 moles
First, look up the atomic weights of the elements involved.
Atomic weight carbon = 12.0107
Atomic weight hydrogen = 1.00794
Atomic weight sulfur = 32.065
Molar mass (C3H5)2S = 6 * 12.0107 + 10 * 1.00794 + 32.065
= 114.2086 g/mol
Moles (C3H5)2S = 35.4 g / 114.2086 g/mol = 0.309959145 mol
Since there's just one sulfur atom per (C3H5)2S molecule, the number of moles of sulfur will match the number of moles of (C3H5)2S which is 0.310 when rounded to 3 significant digits.</span>