Answer: A 100-lb child stands on a scale while riding in an elevator. Then, the scale reading approaches to 100lb, while the elevator slows to stop at the lowest floor
Explanation: To find the correct answer, we need to know more about the apparent weight of a body in a lift.
<h3>What is the apparent weight of a body in a lift?</h3>
- Consider a body of mass m kept on a weighing machine in a lift.
- The readings on the machine is the force exerted by the body on the machine(action), which is equal to the force exerted by the machine on the body(reaction).
- The reaction we get as the weight recorded by the machine, and it is called the apparent weight.
<h3>How to solve the question?</h3>
- Here we have given with the actual weight of the body as 100lbs.
- This 100lb child is standing on the scale or the weighing machine, when it is riding .
- During this condition, the acceleration of the lift is towards downward, and thus, a force of ma .
- There is also<em> mg </em>downwards and a normal reaction in the upward direction.
- when we equate both the upward force and downward force, we get,
i.e. during riding the scale reads a weight less than that of actual weight.
- When the lift goes slow and stops the lowest floor, then the acceleration will be approaches to zero.
Thus, from the above explanation, it is clear that ,when the elevator moves to the lowest floor slowly and stops, then the apparent weight will become the actual weight.
Learn more about the apparent weight of the body in a lift here:
brainly.com/question/28045397
#SPJ4
Answer:
the law of motion
Explanation:
because the wheels are moving it means motion i am not sure which number law it is but I believe that it is 2nd but u should look it up to be safe
The frequency of oscillation is 2.153 Hz
What is the frequency of spring?
Spring Frequency is the natural frequency of spring with a weight at the lower end. Spring is fixed from the upper end and the lower end is free.
For the mass-spring system in this problem,
The Frequency of spring is calculated with the equation:

Where,
f = frequency of spring
k = spring constant = 64 N/m
m = mass attached to spring = 350g = 0.350 kg
a = maximum acceleration = 5.3 m/s^2
Substituting the values in the equation,



Hence,
The frequency of oscillation is 2.153 Hz
Learn more about frequency here:
<u>brainly.com/question/13978015</u>
#SPJ4
Stars are formed in <u>nebulas</u>, interstellar clouds of dust and gas.
<span>a change in allele frequencies in a population over time also known as evolution</span>