C that is your answer hope this helps
We have that the letter A in the diagram below given as
Amplitude
Option A
<h3>
Amplitude</h3>
Question Parameters:
Amplitude
Crest
Trough
Wavelength
Generally, the amplitude of a wave is the maximum displacement of the wave in the medium from its initial position.
Amplitude is denoted with the letter A
Therefore,Amplitude
Option A
For more information on displacement visit
brainly.com/question/989117
Answer:
The amount of matter in an object is its mass
An action that has the ability to change an object's state of motion is a force
The rate at which velocity changes over time is acceleration
Explanation:
- Mass is a scalar quantity that gives a measure of the amount of matter contained in an object/substance. The SI unit of the mass is the kilogram (kg). Mass is an intrinsec property of an object, that means that it does not change when the object is moved in another location.
- A force is a vector quantity, that indicates an action exerted on an object that changes the state of motion of the object. It is measured in Newtons (N). According to Newton's second law, the acceleration of an object is equal to the net force exerted on the object divided by its mass:

- Acceleration is a vector quantity, which is equal to the ratio between the change in velocity of an object and the time interval taken for that change to occur. It is measured in meters per second squared (
). Mathematically, it is defined as

Complete question:
A fireman of mass 80 kg slides down a pole. When he reaches the bottom, 4.2 m below his starting point, his speed is 2.2 m/s. By how much has thermal energy increased during his slide?
Answer:
The thermal energy increased by 3,099.2 J
Explanation:
Given;
mass of the fireman, m = 80 kg
initial position of the fireman, hi = 4.2 m
final speed, v = 2.2 m/s
The change in the thermal energy is calculated as;
ΔE + (K.Ef - K.Ei) + (Uf - Ui) = 0
where;
ΔE is the change in the thermal energy
K.Ef is the final kinetic energy
K.Ei is the initial kinetic energy
Uf is the final potential energy
Ui is the initial potential energy
