Answer:
C = 17 i^ - 7 j^ + 16 k^
, | C| = 24.37
Explanation:
To work the vactor component method, we add the sum in each axis
C = A + B = (Aₓ + Bₓ) i ^ + (
+
) i ^ + (
+
) k ^
Cₓ = 12+ 5 = 17
= -37 +30 = -7
= 58 -42 = 16
Resulting vector
C = 17 i ^ - 7j ^ + 16k ^
The mangitude of the vector is
| C | = √ c²
| C | = √( 17² + 7² + 16²)
| C| = 24.37
2.5 kg because you cant change the weight of the rock
Answer:
B = 62.9 N
Explanation:
This is an exercise on Archimedes' principle, where the thrust force equals the weight of the liquid
B = ρ g V
write the equilibrium equation
T + B -W = 0
B = W- T (1)
use the density to write the weight
ρ = m / V
m = ρ V
W = ρ g V
substitute in 1
B = m g -T
B =
g V - T
To finish the calculation, the density of the material must be known, suppose it is steel \rho_{body} = 7850 kg / m³
calculate
B = 7850 9.8 1.20 10⁻³ - 29.4
B = 92.3 - 29.4
B = 62.9 N
The electrons making the shock come from the women's body.
<h3>What is Electric shock ?</h3>
When a high voltage current flows through the body, electrical shock results. When someone unintentionally touches an electrical source, this typically occurs. Treatment for both internal and exterior burns may be necessary as part of the aftercare.
The nervous system may be impacted by a shock.
The tissue that makes up nerves presents extremely minimal resistance to the flow of an electric charge. Electric shocks that impact nerves can cause pain, tingling, numbness, weakness, or trouble moving a limb. These effects might disappear with time or remain for good.
How to Prevent from Electrical Shocks –
- Keep the Appliances Away from Moisture and Water.
- Never Connect or Disconnect Under Load.
- Be Careful with Capacitors.
- Use Insulated Tools.
- Turn Off the Power.
- Check for Improper or Faulty Wiring.
- Fix Extension Cord Problems.
to learn more about electric shock go to - brainly.com/question/8822505
#SPJ4
Answer:
μ = 0.692
Explanation:
In order to solve this problem, we must make a free body diagram and include the respective forces acting on the body. Similarly, deduce the respective equations according to the conditions of the problem and the directions of the forces.
Attached is an image with the respective forces:
A summation of forces on the Y-axis is performed equal to zero, in order to determine the normal force N. this summation is equal to zero since there is no movement on the Y-axis.
Since the body moves at a constant speed, there is no acceleration so the sum of forces on the X-axis must be equal to zero.
The frictional force is defined as the product of the coefficient of friction by the normal force. In this way, we can calculate the coefficient of friction.
The process of solving this problem can be seen in the attached image.