Answer:
electric field E = (1 /3 e₀) ρ r
Explanation:
For the application of the law of Gauss we must build a surface with a simple symmetry, in this case we build a spherical surface within the charged sphere and analyze the amount of charge by this surface.
The charge within our surface is
ρ = Q / V
Q ’= ρ V
'
The volume of the sphere is V = 4/3 π r³
Q ’= ρ 4/3 π r³
The symmetry of the sphere gives us which field is perpendicular to the surface, so the integral is reduced to the value of the electric field by the area
I E da = Q ’/ ε₀
E A = E 4 πi r² = Q ’/ ε₀
E = (1/4 π ε₀) Q ’/ r²
Now you relate the fraction of load Q ’with the total load, for this we use that the density is constant
R = Q ’/ V’ = Q / V
How you want the solution depending on the density (ρ) and the inner radius (r)
Q ’= R V’
Q ’= ρ 4/3 π r³
E = (1 /4π ε₀) (1 /r²) ρ 4/3 π r³
E = (1 /3 e₀) ρ r
Answer:
Weather situations can be prepared for in many cases,
Explanation:
Answer:u=42.29 m/s
Explanation:
Given
Horizontal distance=167 m
launch angle
Let u be the initial speed of ball
Range




There is too much information given, it's hard to understand exactly which variables are important in this problem.
Answer:

Explanation:
m = Mass of each rod
L = Length of rod = Radius of ring
= Mass of ring
Moment of inertia of a spoke

For 8 spokes

Moment of inertia of ring

Total moment of inertia

The moment of inertia of the wheel through an axis through the center and perpendicular to the plane of the ring is
.