The reaction between oxygen, O2, and hydrogen, H2, to produce water can be expressed as,
2H2 + O2 --> 2H2O
The masses of each of the reactants are calculated below.
2H2 = 4(1.01 g) = 4.04 g
O2 = 2(16 g) = 32 g
Given 1.22 grams of oxygen, we determine the mass of hydrogen needed.
(1.22 g O2)(4.04 g H2 / 32 g O2) = 0.154 g of O2
Since there are 1.05 grams of O2 then, the limiting reactant is 1.22 grams of oxygen.
<em>Answer: 1.22 g of oxygen</em>
The answer to this question would be A. Energy is released.
When a chemical bond is a form, the bond will either suck up energy or produce energy. So, to be precise the energy is not always released but also can be absorbed. In this case, the energy released number will be a minus.
Options B and C is definitely wrong since the bond is formed by an electron, it won't affects neutron/proton.
Option D might be true since the product is made of 2 or more atoms then it would seem larger. But the size of the actual atom won't be increased.
<u>Answer:</u> The moles of water produced are 1.54 moles.
<u>Explanation:</u>
To calculate the number of moles, we use the equation:

Given mass of ethane = 15.42 g
Molar mass of ethane = 30.07 g/mol
Putting values in above equation, we get:

The chemical equation for the combustion of ethane follows:

By Stoichiometry of the reaction:
2 moles of ethane produces 6 moles of water
So, 0.513 moles of ethane will produce =
of water
Hence, the moles of water produced are 1.54 moles.
Answer:
used to date rocks and other objects based on the known decay rate of radioactive isotopes.
Explanation:
Different methods of radiometric dating can be used to estimate the age of a variety of natural and even man-made materials.