Answer:
∧·······∵·······∴·······Hello :D········∴·······∵·······∧
How is Mass or volume change affect density?: Density is an intensive property of the material or substance and depends upon the relationship between the mass and volume. Unless the mass changes in relation to the volume, the density will not change.
Are mass and volume related?: Mass and volume are two units used to measure objects. Mass is the amount of matter an object contains, while volume is how much space it takes up.We can say that the volume of the object is directly proportional to its mass. As the volume increases the mass of the object increases in direct proportion.
How can density of an object be determined?: If the mass of an object increases then its density increases because density is directly proportional to mass.
Hope this helped too. ~(;-;)~
Explanation:
<h2>Hope this helps! </h2><h2 />
Answer:
(C) apparently written incorrectly - it should be 29.9 +- .3 K
(read 29.9 plus or minus .3 K)
Efficiency = (energy that does the job) / (total energy used)
= (45 J) / (120J)
I think you can handle the division.
Answer:
a) V = 195.70 m/s
b) f=3.02 × 10⁻⁴ Hz
c) T = 3311.25 seconds
Explanation:
Given:
Wavelength, λ = 646 Km = 646000 m
Distance traveled = 3410 Km = 3410000 m
Time = 4.84 h = 4.84 × 3600 s = 17424 seconds
a) The speed (V) of the wave is given as
V = distance / time
V = 3410000 m/ 17424 seconds
or
V = 195.70 m/s
b) The frequency (f) of the wave is given as:
f = V / λ
f= 195.70 / 646000
f=3.02 × 10⁻⁴ Hz
c) The time period (T) is given as:
T = 1/ f
T = 1/ (3.02 × 10⁻⁴) Hz
T = 3311.25 seconds
Answer:

Explanation:
<u>Tangent and Angular Velocities</u>
In the uniform circular motion, an object describes the same angles in the same times. If
is the angle formed by the trajectory of the object in a time t, then its angular velocity is

if
is expressed in radians and t in seconds the units of w is rad/s. If the circular motion is uniform, the object forms an angle
in 2t, or
in 3t, etc. Thus the angular velocity is constant.
The magnitude of the tangent or linear velocity is computed as the ratio between the arc length and the time taken to travel that distance:

Replacing the formula for w, we have
