Explanation:
a. The velocity of the wind as a vector in component form will be represented as v vector:

b.The velocity of the jet relative to the air as a vector in component form will be represented as u vector

c. The true velocity of the jet as a vector will be represented as w:


d. The true speed of the jet will be calculated as:




e. The direction of the jet will be:



The data for the first part of the experiment support the first hypothesis. As the force applied to the cart increased, the acceleration of the cart increased. Since the increase in the applied force caused the increase in the cart's acceleration, force and acceleration are directly proportional to each other, which is in accordance with Newton's second law.
Answer:
Required mass of sand is 20 kg
Explanation:
Given:
Mass of the plank = 25 kg
Distance of the Center of gravity of the Plank from the fulcrum = 
Distance of the Center of gravity of the sand box from the fulcrum =
Balancing the torque due to the plank and the sand box with respect to the fulcrum
Torque = Force × perpendicular distance
thus, we get
(25 × g) × 0.5 = weight of sand × 0.625
where, g is the acceleration due to gravity
or
(25 × g) × 0.5 = (mass of sand × g) × 0.625
or
mass of sand = 20 kg
<u>Hence, the required mass of the sand is </u><u>20 kg</u>
Answer:
5/6 MR²
Explanation:
In the composite object, the distance from the disk's axis to the rod's axis is R/2. Using parallel axis theorem, the rod's new moment of inertia is:
I = 1/12 MR² + M (R/2)²
I = 1/12 MR² + 1/4 MR²
I = 1/3 MR²
The total moment of inertia is therefore:
I = 1/2 MR² + 1/3 MR²
I = 5/6 MR²