The flux will be 4 times stronger ( due to the inverse square law )
Answer:
153.6 kN
Explanation:
The elastic constant k of the block is
k = E * A/l
k = 95*10^9 * 0.048*0.04/0.25 = 729.6 MN/m
0.12% of the original length is:
0.0012 * 0.25 m = 0.0003 m
Hooke's law:
F = x * k
Where x is the change in length
F = 0.0003 * 729.6*10^6 = 218.88 kN (maximum force admissible by deformation)
The compressive load will generate a stress of
σ = F / A
F = σ * A
F = 80*10^6 * 0.048 * 0.04 = 153.6 kN
The smallest admisible load is 153.6 kN
Answer:
B
Explanation:
<em>A. His speed is 0 m/s
</em>
<em>B. His velocity is 12 m/s
</em>
<em>C. His velocity is 0 m/s
</em>
<em>D. His acceleration is 12 m/s</em>
Total distance traveled by John = 120 + 120 = 240 meters
Total time taken by John to cover the distance = 10 + 10 = 20 s
<em>Average speed of John = total distance traveled/total time taken</em>
= 240/20 = 12 m/s
Hence, the average speed/velocity of John throughout the journey is 12 m/s.
The correct option is B.
Answer:
6.96 s
Explanation:
The period of a simple pendulum is given by:

where
L is the length of the pendulum and g the acceleration due to gravity.
In this problem, we have a pendulum with length L = 2.00 m, while the acceleration due to gravity is 1/6 that of the earth:

So, the period of the pendulum on the moon is
