Answer:
Power of the string wave will be equal to 5.464 watt
Explanation:
We have given mass per unit length is 0.050 kg/m
Tension in the string T = 60 N
Amplitude of the wave A = 5 cm = 0.05 m
Frequency f = 8 Hz
So angular frequency 
Velocity of the string wave is equal to 
Power of wave propagation is equal to 
So power of the wave will be equal to 5.464 watt
An airplane has a large amount of kinetic energy in flight due to its large mass and fast velocity.
Answer:

Explanation:
The period of the simple pendulum is:

Where:
- Cord length, in m.
- Gravity constant, in
.
Given that the same pendulum is test on each planet, the following relation is formed:

The ratio of the gravitational constant on planet CornTeen to the gravitational constant on planet Earth is:



Newton's second law of motion pertains to the behavior of objects for which all existing forces are not balanced. The second law states that the acceleration of an object is dependent upon two variables - the net force acting upon the object and the mass of the object. The acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.